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 Identity and De�nite Descriptions

Volker Halbach

�e analysis of the beginning would thus yield the

notion of the unity of being and not-being – or, in

a more re�ected form, the unity of di�erentiatedness

and non-di�erentiatedness, or the identity of identity

and non-identity. Hegel,�e Science of Logic



8.1 Qualitative and Numerical Identity

Assume Keith and Volker don’t share a car; they only have the
same model of the same year (same colour etc).

Example
Keith and Volker have the same car.
Keith and Volker have identical cars.

�is an example of (approximate) qualitative identity.

Qualitative identity can be formalised as a binary predicate letter
expressing close similarity or sameness in all relevant aspects.
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In L we can formalise ‘is identical to’ as a binary predicate letter,
but this predicate letter can receive arbitrary relations as
extension (semantic value).

In L= the new binary predicate letter is always taken to express
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8.2 The Syntax of L=

De�nition (atomic formulae of L=)
All atomic formulae of L are atomic formulae of L=.
Furthermore, if s and t are variables or constants, then s= t is an
atomic formula of L=.

Example
c=a, x= y, x=x, and x=a are all atomic formulae of L=.

�e symbol ‘=’ now plays two roles: as symbol of L= and as a
symbol in the metalanguage.
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One can use connectives and quanti�ers to build formulae of L=
in the same ways as in L.

Example
¬ x= y and ∀x(Rxy → y=x) are formulae of L=.

�e notion of an L=-sentence is de�ned in analogy to the notion
of an L-sentence.



8.2 The Syntax of L=

One can use connectives and quanti�ers to build formulae of L=
in the same ways as in L.

Example
¬ x= y and ∀x(Rxy → y=x) are formulae of L=.

�e notion of an L=-sentence is de�ned in analogy to the notion
of an L-sentence.



8.2 The Syntax of L=

One can use connectives and quanti�ers to build formulae of L=
in the same ways as in L.

Example
¬ x= y and ∀x(Rxy → y=x) are formulae of L=.

�e notion of an L=-sentence is de�ned in analogy to the notion
of an L-sentence.



8.3 Semantics

Everything is as for L, except that an additional clause needs to
be added to the de�nition of satisfaction, whereA is an
L-structure, s is a variable or constant, and t is a variable or
constant:
(ix) ∣s= t∣αA=T if and only if ∣s∣

α
A=∣t∣

α
A.

All other de�nitions of Chapter 5 carry over to L=, just with ‘L’
replaced by ‘L=’.

Caution: L=-structures don’t assign semantic values to the
symbol =.�ere is no di�erence between L= and L-structures!
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Counterexample: LetA be any L-structure with {, } as its
domain.
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8.4 Proof Rules for Identity

Natural Deduction for L= has the same rules as Natural
Deduction for L except for rules for =:

=Intro
Any assumption of the form t= t where t is a constant can and must
be discharged.

A proof with an application of =Intro looks like this:

[t= t]
⋮
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8.4 Proof Rules for Identity

=Elim
If s and t are constants, the result of appending ϕ[t/v] to a proof of
ϕ[s/v] and a proof of s= t or t= s is a proof of ϕ[t/v].

⋮

ϕ[s/v]
⋮

s= t
=Elim

ϕ[t/v]

⋮

ϕ[s/v]
⋮

t= s
=Elim

ϕ[t/v]

Strictly speaking, only one of the versions is needed, as from s= t
one can always obtain t= s using only one of the rules.
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⊢ ∀x ∀y (Rxy → (x= y → Ryx))

Here is the proof:

[

Rab

] [

a=b

]

Raa

[

a=b

]

Rba
a=b → Rba

Rab → (a=b → Rba)
∀y (Ray → (a= y → Rya))
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8.4 Proof Rules for Identity

�eorem (adequacy)
Assume that ϕ and all elements of Γ are L=-sentences.�en
Γ ⊢ ϕ if and only if Γ ⊧ ϕ.
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Using = one can formalise overt identity claims:

Example
William ii is Wilhelm ii.

formalisation
a = b
a: William ii
b: Wilhelm ii
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8.4 Uses of identity

Don’t confuse identity with predication.

Example
William is an emperor.

formalisation
Qa
a: William
Q: . . . is an emperor

Here ‘is’ forms part of the predicate ‘is an emperor’.

Example
William is the emperor.

Here ‘is’ expresses identity.
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8.4 Uses of identity

Identity can also be used in formalisations of sentences that do
not involve identity explicitly.

Example
�ere is exactly one perfect being.

formalisation
∃x (Px ∧ ∀y (Py → x= y))

P: . . . is a perfect being

Similar tricks work for various other numerical quanti�ers ‘at
least three’, ‘at most 2’, and so on.

�ere is no reference to numbers.
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De�nite descriptions

�e following expressions are de�nite descriptions:

the present king of France
Tim’s car
the person who has stolen a book from the library and who
has forgotten his or her bag in the library

Formalising de�nite descriptions as constants brings various
problems as the semantics of de�nite descriptions doesn’t match
the semantics of constants in L=.
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Russell’s trick

Example
Tim’s car is red.

Paraphrase
Tim owns exactly one car and it is red.

formalisation
∃x (Qx ∧ Rbx ∧ ∀y (Qy ∧ Rby → x= y) ∧ Px)

b: Tim
Q: . . . is a car
R: . . . owns . . .
P: . . . is red
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8.4 Uses of identity

�is formalisation is much better than the formalisation of ‘Tim’s
car’ as a constant.
For instance, the following argument comes out as valid if
Russell’s trick is used (but not if a constant is used):

Example
Tim’s car is red.�erefore there is a red car.

formalisation
∃x(Qx ∧ Rbx ∧ ∀y(Qy ∧ Rby → x= y) ∧ Px) ⊢ ∃x(Px ∧ Qx)

�e proof is in the Manual.

So the English argument is valid in predicate logic with identity.
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8.4 Uses of identity

By using Russell’s trick one can formalise de�nite descriptions in
such way that the de�nite description may fail to refer to
something. Constants, in contrast, are assigned objects in any
L-structure.

Using Russell’s trick o�ers more ways to analyse sentences
containing de�nite descriptions and negations.

Example
Volker’s Ferrari is red.
Volker’s Ferrari isn’t red.

�e �rst sentence is false, but is the second sentence true?

�ere is a reading under which both sentence are false.�is
reading can be made explicit in L= using Russell’s analysis of
de�nite descriptions.
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8.4 Uses of identity

Example
Volker’s Ferrari isn’t red.

formalisation
∃x((Qx ∧ Rax) ∧ ∀y(Qy ∧ Ray → x= y) ∧ ¬Px)

a: Volker
Q: . . . is a Ferrari
R: . . . owns . . .
P: . . . is red

�is formalisation expresses that Volker has exactly one Ferrari
and that it isn’t red.

Under this analysis ‘Volker’s Ferrari is red’ and ‘Volker’s Ferrari
isn’t red’ are both false.
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It’s not the case (for whatever reason) that Volker’s Ferrari is red.

I tend to understand this sentence in the following way:

formalisation
¬∃x((Qx ∧ Rax) ∧ ∀y(Qy ∧ Ray → x= y) ∧ Px)

Perhaps the sentence ‘Volker’s Ferrari isn’t red’ can be understood
as saying the same; so it is ambiguous (scope ambiguity
concerning ¬).

¬

∃x((Qx ∧ Rax) ∧ ∀y(Qy ∧ Ray → x= y) ∧

¬
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8.4 Uses of identity

Logical constants

I have treated identity, the connectives and expressions like ‘all’
etc. as subject-independent vocabulary. Perhaps there are more
such expressions:

many, few, in�nitely many

necessarily, possibly
it’s obligatory that

At any rate the logical vocabulary of L= is su�cient for analysing
the validity of arguments in (large parts of) the sciences and
mathematics.

Perhaps the above expressions can be analysed in L= in the
framework of speci�c theories.
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�e dark side

So far you have seen the logician mainly as a kind of
philosophical hygienist, who makes sure that philosophers don’t
blunder by using logically invalid arguments or by messing up
the scopes of quanti�ers or connectives.

Logic seems to be an auxiliary discipline for sticklers who secure
the foundations of other disciplines.

But there is also a dark side.

Here is an example. 10
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The dark side

Russell’s paradox

If there are any safe foundations in any discipline, then the
foundations of mathematics and logic should be unshakable.

I have used sets for the foundations of logic: sets, relations, and
functions. L-structures are de�ned in terms of sets. Large parts
of various disciplines (mathematics, sciences, various parts of
philosophy) are founded on set theory.

Sets replace in many cases the role assigned to universals in
classical philosophy.

But the theory of sets is threatened by paradox.
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The dark side

Example (Exercise 7.6)
�ere is not set {d ∶ d ∉ d} that contains exactly those things that
do not have themselves as elements.

�us de�ning sets using expressions {d ∶ . . .d . . .} is risky. So
presumably the assumptions about sets you used at school form
an inconsistent set of assumptions: anything can be proved from
them.



The dark side

Russell’s paradox shattered Frege’s foundations of mathematics.

In the early 20th century logicians developed theories of sets in
which the Russell paradox does not arise (e.g. Zermelo-Fraenkel
set theory).�ey are still in use.

But there remained doubt in the hearts of some mathematicians
and philosophers: they still didn’t know that the theory of sets
(and therefore the foundations of mathematics) is consistent as
there could be other paradoxes.

�e hope: one day a white knight would come and prove, using
the instruments of logic, that the revised theory of sets is
(syntactically or semantically) consistent. Some tried. . .
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The dark side

In the end a black knight came and, using the methods of logic,
proved roughly the following:

If there is a proof of the consistency of set theory, using
the tools of logic and set theory, then set theory is
inconsistent.

We can never prove, perhaps never know, that the foundations are
safe (consistent). Not only did the white knights fail, they failed
by necessity.

Gödel’s proof is so devastatingly general that replacing set theory
with a tamer theory will not help against Gödel’s result. One can
prove the consistency of one’s standpoint only if that standpoint is
inconsistent.

What remains is, perhaps, faith. . .
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