‘Contrariwise,’ continued Tweedleddee, ‘if it was so, it might be; and if it were so, it would be; but as it isn’t, it ain’t. That’s logic.’

Lewis Carroll, Through the Looking-Glass, Chapter 4
In this lecture I’ll wrap up my treatment of predicate logic by bringing together three strands:

- predicate logic and English (chapter 4)
- the semantics of predicate logic (chapter 5)
- Natural Deduction (chapter 6)
Theorem (adequacy)

Assume that \(\phi \) and all elements of \(\Gamma \) are \(\mathcal{L}_2 \)-sentences. Then \(\Gamma \vdash \phi \) if and only if \(\Gamma \models \phi \).
Consistency

Definition (syntactic consistency)
A set Γ of \mathcal{L}_2-sentences is syntactically consistent iff there is a sentence ϕ such that $\Gamma \not\models \phi$.

A set Γ is syntactically inconsistent iff it’s not syntactically consistent.
FIRST REMARK

A set Γ is syntactically inconsistent iff for all sentences ϕ of \mathcal{L}_2, $\Gamma \vdash \phi$.
FIRST REMARK

A set Γ is syntactically inconsistent iff for all sentences ϕ of L_2, $\Gamma \vdash \phi$.

SECOND REMARK

A set Γ is syntactically inconsistent iff $\Gamma \vdash (P \land \neg P)$.

Here P is the sentence letter (I could have used any other sentence). To show that the first remark follows from the second, one proves that $\Gamma \vdash \phi$ for any sentence ϕ if $\Gamma \vdash (P \land \neg P)$.

\[
\begin{array}{l}
\vdots \\
\not\exists x \exists y Rx y \\
\hline
\end{array}
\]
Definition (semantic consistency, chapter 5)
A set Γ of \mathcal{L}_2-sentences is semantically consistent if and only if there is an \mathcal{L}_2-structure \mathcal{A} in which all sentences in Γ are true.
Definition (semantic consistency, chapter 5)
A set Γ of \mathcal{L}_2-sentences is semantically consistent if and only if there is an \mathcal{L}_2-structure A in which all sentences in Γ are true.

Theorem (using the adequacy theorem)
A set Γ of \mathcal{L}_2-sentences is semantically consistent if and only if Γ is syntactically consistent.
Definition (semantic consistency, chapter 5)
A set Γ of \mathcal{L}_2-sentences is semantically consistent if and only if there is an \mathcal{L}_2-structure \mathcal{A} in which all sentences in Γ are true.

Theorem (using the adequacy theorem)
A set Γ of \mathcal{L}_2-sentences is semantically consistent if and only if Γ is syntactically consistent.

In order to show that a set of sentences is semantically or syntactically consistent, one can prove that there is an \mathcal{L}_2-structure in which all sentences in the set are true.
A set Γ of \mathcal{L}_2-sentences is semantically consistent if and only if there is an \mathcal{L}_2-structure \mathcal{A} in which all sentences in Γ are true.

A set Γ of \mathcal{L}_2-sentences is semantically consistent if and only if Γ is syntactically consistent.

In order to show that a set of sentences is semantically or syntactically consistent, one can prove that there is an \mathcal{L}_2-structure in which all sentences in the set are true.

In order to show that a set Γ of sentences is inconsistent, one can prove that $\Gamma \vdash (P \land \neg P)$. For any inconsistent set there is such a proof.
Definition (semantic consistency, chapter 5)
A set Γ of L_2-sentences is semantically consistent if and only if there is an L_2-structure A in which all sentences in Γ are true.

Theorem (using the adequacy theorem)
A set Γ of L_2-sentences is semantically consistent if and only if Γ is syntactically consistent.

In order to show that a set of sentences is semantically or syntactically consistent, one can prove that there is an L_2-structure in which all sentences in the set are true.

In order to show that a set Γ of sentences is inconsistent, one can prove that $\Gamma \vdash (P \land \neg P)$. For any inconsistent set there is such a proof.

For finite sets of L_1-sentences we have the truth table method.
Decidability

In contrast to \mathcal{L}_1, we still don’t have a systematic method for checking whether an argument in \mathcal{L}_2 (with finitely many premisses) is valid or whether an \mathcal{L}_2-sentence is a logical truth or whether it is inconsistent.
Decidability

In contrast to \mathcal{L}_1, we still don’t have a systematic method for checking whether an argument in \mathcal{L}_2 (with finitely many premisses) is valid or whether an \mathcal{L}_2-sentence is a logical truth or whether it is inconsistent.

Theorem (Church 1936)

There is no ‘recursive’ method for deciding whether an \mathcal{L}_2-sentence is logically true (or whether an \mathcal{L}_2-argument with finitely many premisses is valid).

That is, one cannot write a computer programme that tells one, applied to an \mathcal{L}_2-sentence, after finite time whether the sentence is logically true or not. That holds even if no restrictions are imposed on the memory, disk space, computation time etc.

Consequently, there is no method for deciding whether a given \mathcal{L}_2-sentence is provable.
How does the formal language \mathcal{L}_2 relate to English? In chapter 4 I have already sketched how one goes about formalisations of English sentences in \mathcal{L}_2.
How does the formal language \mathcal{L}_2 relate to English? In chapter 4 I have already sketched how one goes about formalisations of English sentences in \mathcal{L}_2.

Definition

An argument in English is **valid** in predicate logic if and only if its formalisation in the language \mathcal{L}_2 of predicate logic is valid.
Example

All concrete objects are located in space. The number 5 isn’t located in space. So the number 5 isn’t a concrete object.

FORMALISATION

\[\forall x (P_x \rightarrow Q_x), \neg Q_a \vdash \neg P_a \]

- **P:** … is a concrete object
- **Q:** … is located in space
- **a:** the number 5
Example

All concrete objects are located in space. The number 5 isn’t located in space. So the number 5 isn’t a concrete object.

FORMALISATION

\[\forall x \ (P_x \rightarrow Q_x), \neg Q_a \vdash \neg P_a \]

- \(P\): … is a concrete object
- \(Q\): … is located in space
- \(a\): the number 5

\[\forall x (P_x \rightarrow Q_x) \]
Example

All concrete objects are located in space. The number 5 isn’t located in space. So the number 5 isn’t a concrete object.

FORMALISATION

\[\forall x (P_x \rightarrow Q_x), \neg Q_a \vdash \neg P_a \]

- \(P \): \ldots is a concrete object
- \(Q \): \ldots is located in space
- \(a \): the number 5

\[
\begin{align*}
\forall x (P_x \rightarrow Q_x) \\
\hline
Pa \rightarrow Qa
\end{align*}
\]
Example

All concrete objects are located in space. The number 5 isn’t located in space. So the number 5 isn’t a concrete object.

FORMALISATION

\[\forall x (Px \rightarrow Qx), \neg Qa \vdash \neg Pa \]

- \(P \): … is a concrete object
- \(Q \): … is located in space
- \(a \): the number 5

\[\begin{array}{c}
\forall x (Px \rightarrow Qx) \\
Pa \\
\hline
Pa \rightarrow Qa
\end{array} \]
Example

All concrete objects are located in space. The number 5 isn’t located in space. So the number 5 isn’t a concrete object.

FORMALISATION

$\forall x (Px \rightarrow Qx), \neg Qa \vdash \neg Pa$

P: … is a concrete object

Q: … is located in space

a: the number 5

$\frac{\forall x (Px \rightarrow Qx)}{Pa \rightarrow Qa}$

$Pa \rightarrow Qa$

Qa
Example

All concrete objects are located in space. The number 5 isn’t located in space. So the number 5 isn’t a concrete object.

FORMALISATION

∀x (Px → Qx), ¬Qa ⊢ ¬Pa

\[P: \text{... is a concrete object} \]
\[Q: \text{... is located in space} \]
\[a: \text{the number 5} \]

\[\begin{array}{c}
\forall x (Px \rightarrow Qx) \\
 Pa \\
 \hline
 Pa \rightarrow Qa \\
 \hline
 Qa \\
 \hline
 \neg Qa
\end{array} \]
Example

All concrete objects are located in space. The number 5 isn’t located in space. So the number 5 isn’t a concrete object.

FORMALISATION

\[\forall x \left(P_x \rightarrow Q_x \right), \neg Q_a \vdash \neg P_a \]

- \(P \): … is a concrete object
- \(Q \): … is located in space
- \(a \): the number 5

\[
\begin{align*}
[Pa] & \quad \forall x \left(P_x \rightarrow Q_x \right) \\
\hline
Pa & \rightarrow Qa \\
\hline
Qa & \quad \neg Qa \\
\hline
\neg Pa &
\end{align*}
\]

So the argument is valid in predicate logic.
Above I formalised ‘is located in space’ by a single predicate letter rather than a binary one and a constant.

When showing that an argument is valid in predicate logic, one doesn’t have to give a full formalisation when one is able to prove the validity of a partial formalisation.
Above I formalised ‘is located in space’ by a single predicate letter rather than a binary one and a constant.

When showing that an argument is valid in predicate logic, one doesn’t have to give a full formalisation when one is able to prove the validity of a partial formalisation.

Caution When showing that an argument is *not* valid in predicate logic you need to give the full formalisation (because a more detailed formalisation might yield a valid argument).
Example: show the following argument is not valid

A belief is known only if it is true and justified. The belief that Jones is in Barcelona or Jones owns a Ford is true and justified. Therefore, it’s known.
Example: show the following argument is not valid

A belief is known only if it is true and justified. The belief that Jones is in Barcelona or Jones owns a Ford is true and justified. Therefore, it’s known.

Step (i): formalise

Premiss 1: $\forall x (P_x \rightarrow (P_1 x \rightarrow (Q x \land R x)))$.

Dictionary:

- P: … is a belief
- P_1: … is known
- Q: … is true
- R: … is justified
- a: the belief that Jones is in Barcelona or Jones owns a Ford
Example: show the following argument is not valid

A belief is known only if it is true and justified. The belief that Jones is in Barcelona or Jones owns a Ford is true and justified. Therefore, it’s known.

Step (i): formalise

Premiss 1: \(\forall x (P_x \rightarrow (P_1 x \rightarrow (Q x \land R x))) \).
Premiss 2: \(P_a \land Q a \land R a \).

Dictionary:
- \(P \): ... is a belief
- \(P_1 \): ... is known
- \(Q \): ... is true
- \(R \): ... is justified
- \(a \): the belief that Jones is in Barcelona or Jones owns a Ford
Example: show the following argument is not valid

A belief is known only if it is true and justified. The belief that Jones is in Barcelona or Jones owns a Ford is true and justified. Therefore, it’s known.

Step (i): formalise

Premiss 1: ∀x (Px → (P₁x → (Qx ∧ Rx))).
Premiss 2: Pa ∧ Qa ∧ Ra.
Conclusion: P₁a.

Dictionary:

- \(P \): ... is a belief
- \(P₁ \): ... is known
- \(Q \): ... is true
- \(R \): ... is justified
- \(a \): the belief that Jones is in Barcelona or Jones owns a Ford
Claim
\[\forall x \, (P_x \rightarrow (P_1 x \rightarrow Q x \land R x)), \, P a \land Q a \land R a \not\models P_1 a \]

(Because of the adequacy theorem \(\not\models \) and \(\not\equiv \) coincide.)
Claim

\[\forall x (Px \rightarrow (P_1x \rightarrow Qx \land Rx)), Pa \land Qa \land Ra \not\equiv P_1a \]

(Because of the adequacy theorem \(\not\equiv \) and \(\not\) coincide.)

Here is a counterexample:

Let \(\mathcal{A} \) be an \(\mathcal{L}_2 \)-structure with \(\{1\} \) as its domain and

\[
\begin{align*}
|P|_{\mathcal{A}} &= \{1\} \\
|P_1|_{\mathcal{A}} &= \emptyset \\
|Q|_{\mathcal{A}} &= \{1\} \\
|R|_{\mathcal{A}} &= \{1\} \\
|a|_{\mathcal{A}} &= 1
\end{align*}
\]

The premisses are true, the conclusion is false in this structure.
Logical truth of English sentences in predicate logic etc. are defined in analogy to the notions of logical truth etc. in propositional logic:

Definition

1. An English sentence is **logically true in predicate logic** iff its formalisation in predicate logic is logically true.

2. An English sentence is a **contradiction in predicate logic** iff its formalisation in predicate logic is a contradiction.

3. A set of English sentences is **consistent in predicate logic** iff the set of their formalisations in predicate logic is semantically consistent.
To show that an English sentence is logically true in predicate logic, one can (try to) formalise the sentence as a sentence ϕ of \mathcal{L}_2 and prove that $\vdash \phi$.
To show that an English sentence is logically true in predicate logic, one can (try to) formalise the sentence as a sentence ϕ of \mathcal{L}_2 and prove that $\vdash \phi$.

To show that an English sentence is a contradiction in predicate logic one can formalise the sentence as a sentence ϕ of \mathcal{L}_2 and prove that $\vdash \neg \phi$.
To show that an English sentence is logically true in predicate logic, one can (try to) formalise the sentence as a sentence ϕ of \mathcal{L}_2 and prove that $\vdash \phi$.

To show that an English sentence is a contradiction in predicate logic one can formalise the sentence as a sentence ϕ of \mathcal{L}_2 and prove that $\vdash \neg \phi$.

To show that a set of English sentences is consistent in predicate logic, one can formalise all sentences in the set and show that the formalisations are are all true in some \mathcal{L}_2-structure.
To show that an English sentence is logically true in predicate logic, one can (try to) formalise the sentence as a sentence ϕ of L_2 and prove that $\vdash \phi$.

To show that an English sentence is a contradiction in predicate logic one can formalise the sentence as a sentence ϕ of L_2 and prove that $\vdash \neg \phi$.

To show that a set of English sentences is consistent in predicate logic, one can formalise all sentences in the set and show that the formalisations are all true in some L_2-structure.

To show that a set of English sentences is inconsistent in predicate logic, one can formalise some of the sentences as ϕ_1, \ldots, ϕ_n and show that $\{\phi_1, \ldots, \phi_n\} \vdash (P \land \neg P)$.
The language \mathcal{L}_2 is very powerful. Large parts of the sciences and mathematics can easily be formalised in it.
The language L_2 is very powerful. Large parts of the sciences and mathematics can easily be formalised in it.

I return to the problem of formalising English sentences in L_2. As we can now analyse more structural features of English sentences, we get new problems.
FIRST PROBLEM

Arity of predicates

Jones buttered the toast with a knife in the bathroom.
Jones buttered the toast with a knife.
Jones buttered the toast.

Should one formalise the predicate as a predicate letter of arity four, three, or two?

Arguably, one could paraphrase the last sentence as

Jones buttered the toast with something in some place.

and then use a predicate letter of arity four for the formalisation.
FIRST PROBLEM

Arity of predicates

Jones buttered the toast with a knife in the bathroom.
Jones buttered the toast with a knife.
Jones buttered the toast.

Should one formalise the predicate as a predicate letter of arity 4, 3, or 2?
Jones buttered the toast with a knife in the bathroom.
Jones buttered the toast with a knife.
Jones buttered the toast.

Should one formalise the predicate as a predicate letter of arity 4, 3, or 2?

Arguably, one could paraphrase the last sentence as

Jones buttered the toast with something in some place.

and then use a predicate letter of arity 4 for the formalisation.
SECOND PROBLEM

Lexical ambiguity
The predicate expressions ‘is a bank’, ‘is a suit’ are ambiguous.

In \mathcal{L}_2 there is no lexical ambiguity: in a \mathcal{L}_2-structure the semantic value of a unary predicate letter is always a single set. Accordingly, one has to use different predicate letters for ‘is a bank’ (as a financial institution) and for ‘is a bank’ (as the edge of a river).
Third Problem

Structural ambiguity

Example

New Collegestudent is clever.

This is ambiguous between:

1. $\exists x (P_x \land Q_x)$
2. $\forall x (P_x \rightarrow Q_x)$

P: *is a New Collegestudent*

Q: *is clever*
THIRD PROBLEM

Structural ambiguity

The indefinite article can be used to make existential or universal claims.

Example

A New College student is clever.
Third Problem

Structural ambiguity

The indefinite article can be used to make existential or universal claims.

Example

A New College student is clever.

This is ambiguous between:

1. $\exists x (P x \land Q x)$ and
2. $\forall x (P x \rightarrow Q x)$

P: … is a New College student
Q: … is clever
Example
All the books were taken by someone.
Example

All the books were taken by someone.

Arguably, there are two readings:

1. \(\forall y (Py \rightarrow \exists x (Qx \land Rx \ y)) \) and
2. \(\exists x (Qx \land \forall y (Py \rightarrow Rx \ y)) \)

\(P \): \(\ldots \) is a book
\(Q \): \(\ldots \) is a person
\(R \): \(\ldots \) took \(\ldots \)
The kind of ambiguity in

All the books were taken by someone.

is known as scope ambiguity because the formalisations assign different scopes to the quantifier $\forall x$.

Definition (scope of a quantifier)

The *scope* of an occurrence of a quantifier in a sentence ϕ is (the occurrence of) the smallest \mathcal{L}_2-formula that contains that quantifier and is part of ϕ.
FOURTH PROBLEM

Intensionality
FOURTH PROBLEM
Intensionality

Example
Sören believes in an almighty being. Therefore there is an almighty being.

INCORRECT FORMALISATION, Exercise 6.3 (i)

\[\exists x (Rax \land Px) \vdash \exists x Px \]

\[a: \quad \text{Sören} \]
\[P: \quad \ldots \text{is an almighty being} \]
\[R: \quad \ldots \text{believes in} \ldots \]
INCORRECT FORMALISATION

$$\exists x (Rax \land Px) \vdash \exists x Px$$
INCORRECT FORMALISATION

\[\exists x (Rax \land Px) \vdash \exists x Px \]

\[\exists x (Rax \land Px) \]
INCORRECT FORMALISATION

\[\exists x (Rax \land Px) \vdash \exists x Px \]

\[Rab \land Pb \]

\[\exists x (Rax \land Px) \]
INCORRECT FORMALISATION

\[\exists x (Rax \land Px) \vdash \exists x Px \]

\[\begin{array}{c}
Rab \land Pb \\
\hline
Pb
\end{array} \]

\[\exists x (Rax \land Px) \]
INCORRECT FORMALISATION

\[\exists x (Rax \land Px) \vdash \exists x Px \]

\[
\begin{array}{c}
Rab \land Pb \\
\hline
Pb \\
\hline
\exists x Px
\end{array}
\]

\[\exists x (Rax \land Px) \]
INCORRECT FORMALISATION

\[\exists x (Rax \land Px) \vdash \exists x Px \]

\[
\begin{array}{c}
\exists x (Rax \land Px) \\
\quad \frac{[Rab \land Pb]}{Pb} \\
\quad \exists x Px
\end{array}
\]

\[\exists x Px \]
INCORRECT FORMALISATION

\[\exists x (Rax \land Px) \vdash \exists x Px \]

\[
\frac{[Rab \land Pb]}{
\frac{\exists x (Rax \land Px)}{Pb}
\frac{Pb}{\exists x Px}
}\]

So the \(\mathcal{L}_2 \)-argument is valid.
Probably this is not a good proof for the existence of an almighty being.
Probably this is not a good proof for the existence of an almighty being.

What’s going wrong here?
Probably this is not a good proof for the existence of an almighty being.

What’s going wrong here?

The English predicate expression ‘believes in’ doesn’t express a relation between the believer and another object. It’s semantics is different from the semantics of a predicate letter of \(\mathcal{L}_2 \).
Example

Miles wants to live in Oxford. Oxford is a city with high levels of air pollution. Therefore Miles wants to live in a city with high levels of air pollution.

INCORRECT FORMALISATION

\[R a b \]
\[Q b \]
\[\exists x \ (Rax \land Qx) \]

- **R**: … wants to live in …
- **Q**: … is a city with high levels of air pollution
- **a**: Miles
- **b**: Oxford
If the formalisation were sound the argument would be valid in predicate logic as

Claim

\[Rab, Qb \vdash \exists x \ (Rax \land Qx) \]
If the formalisation were sound the argument would be valid in predicate logic as

Claim

\[Rab, Qb \vdash \exists x (Rax \land Qx) \]

\[
\begin{array}{c}
Rab \\
\hline
Qb \\
\hline
Rab \land Qb \\
\hline
\exists x (Rax \land Qx) \quad \exists\text{Intro}
\end{array}
\]
Again ‘wants to live in’ doesn’t express a relation between a person and a place. Hence it cannot be formalised using a binary predicate letter (at best one can formalise ‘wants to live in Oxford’ and ‘wants to live in a city with high levels of air pollution’ as two separate unary predicate letters.
Again ‘wants to live in’ doesn’t express a relation between a person and a place. Hence it cannot be formalised using a binary predicate letter (at best one can formalise ‘wants to live in Oxford’ and ‘wants to live in a city with high levels of air pollution’ as two separate unary predicate letters.

This shows that in some cases the truth of an English sentence does not only depend on what a designator designates.
Again ‘wants to live in’ doesn’t express a relation between a person and a place. Hence it cannot be formalised using a binary predicate letter (at best one can formalise ‘wants to live in Oxford’ and ‘wants to live in a city with high levels of air pollution’ as two separate unary predicate letters.

This shows that in some cases the truth of an English sentence does not only depend on what a designator designates.

This is not the case in \mathcal{L}_2.
Extensionality of \mathcal{L}_2

If constants, sentence letters, and predicate letters are replaced in an \mathcal{L}_2-sentence by other constants, sentence letters, and predicate letters (respectively) that have the same extension in a given \mathcal{L}_2-structure, then the truth-value of the sentence in that \mathcal{L}_2-structure does not change.

That is, the truth value of an \mathcal{L}_2-sentence in an \mathcal{L}_2-structure depends only on the extension (semantic value) of the symbols in the sentence in that \mathcal{L}_2-structure.
Extensionality of \mathcal{L}_2

If constants, sentence letters, and predicate letters are replaced in an \mathcal{L}_2-sentence by other constants, sentence letters, and predicate letters (respectively) that have the same extension in a given \mathcal{L}_2-structure, then the truth-value of the sentence in that \mathcal{L}_2-structure does not change.

That is, the truth value of an \mathcal{L}_2-sentence in an \mathcal{L}_2-structure depends only on the extension (semantic value) of the symbols in the sentence in that \mathcal{L}_2-structure.

In contrast to English, \mathcal{L}_2 is an extensional language.
‘that’-sentences and ontology

Example

Fred believes that 8 is (identical to) 8.
Fred believes that the number of planets is 8.
‘that’-sentences and ontology

<table>
<thead>
<tr>
<th>Example</th>
<th>Example</th>
</tr>
</thead>
</table>
| Fred believes that 8 is (identical to) 8.
Fred believes that the number of planets is 8. | It’s necessary that 8 is 8.
It’s necessary that the number of planets is 8. |
‘that’-sentences and ontology

Example
Fred believes that 8 is (identical to) 8.
Fred believes that the number of planets is 8.

Example
It’s necessary that 8 is 8.
It’s necessary that the number of planets is 8.

These two examples show that

… believes that … is …
it’s necessary that … is …

do not express relations and thus must not be formalised as predicate letters.
Some philosophers have proposed to analyse these sentences using propositions:

Example

Fred believes the proposition that 8 is 8.

formalisation

\[R_{1ab} \]

- \(R_1 \): ... believes ...
- \(a \): Fred
- \(b \): the proposition that 8 is 8
Some philosophers have proposed to analyse these sentences using propositions:

Example

Fred believes the proposition that 8 is 8.

formalisation

\[R_{1} ab \]

- \(R_{1} \): … believes …
- \(a \): Fred
- \(b \): the proposition that 8 is 8

In more sophisticated formalisations the constant \(b \) might be further analysed (even within predicate logic). At any rate we are now getting into metaphysical problems: What are propositions (if they exist at all)? How are propositions structured?
Different philosophical views force different formalisations:

- If belief is a relation between a believer and an proposition, the formalisation $R_{1}ab$ is adequate.
- If belief is merely a certain state of mind and the believer is not entering a relation with some object (proposition etc), then $R_{1}ab$ is surely not adequate.
Quotation

The phrase

‘…’ has six letters

is not extensional.
Quotation

The phrase

‘…’ has six letters

is not extensional.

Example

‘London’ has six letters.
‘the capital of England’ has six letters.
Looking back to Chapter 1 should shed some light on how to deal with quotation marks in formalisations.
Looking back to Chapter 1 should shed some light on how to deal with quotation marks in formalisations.

Example

‘snow’ is a noun.

This isn’t a sentence about snow; this is a sentence about the word ‘snow’. Thus, the above sentence must not be formalised as \(Pa \) with the following dictionary:

- \(P \): ‘…” is a noun
- \(a \): snow

But it can be formalised as \(Qb \).

- \(Q \): … is a noun
- \(b \): ‘snow’
The *spoken* sentence

Tom is monosyllabic.

is ambiguous. The ambiguity is made explicit by the following two formalisations.
One might argue that ‘is monosyllabic’ is ambiguous at least in spoken English.

FORMALISATION I

<table>
<thead>
<tr>
<th>Qa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: … is monosyllabic</td>
</tr>
<tr>
<td>a: ‘Tom’</td>
</tr>
</tbody>
</table>

FORMALISATION II

<table>
<thead>
<tr>
<th>Qb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: … is monosyllabic</td>
</tr>
<tr>
<td>b: Tom</td>
</tr>
</tbody>
</table>

Qa: In the first instance, the question is whether the entity is monosyllabic and the answer is ‘Tom’.

Qb: In the second instance, the question is whether the entity is monosyllabic and the answer is ‘Tom’.