
INTRODUCTION TO LOGIC

�e Semantics of Predicate Logic

Volker Halbach

We could forget about philosophy. Settle
down and maybe get into semantics.

Woody Allen,Mr. Big

Outline

1 Validity.
2 Semantics for simple English sentences.
3 Semantics for L-formulae.
4 L-structures.

Introduction

Argument Valid
(1) Zeno is a tortoise.
(2) All tortoises are toothless.
�erefore, (C) Zeno is toothless.

Formalisation
(1) Pa
(2) ∀x (Px → Qx)
(C) Qa

Dictionary: a: Zeno. P:. . . is a tortoise. Q: . . . is toothless

What is it for this L-argument to be valid?

Introduction

Argument Valid
(1) Zeno is a tortoise.
(2) All tortoises are toothless.
�erefore, (C) Zeno is toothless.

Formalisation
(1) Pa
(2) ∀x (Px → Qx)
(C) Qa

Dictionary: a: Zeno. P:. . . is a tortoise. Q: . . . is toothless

What is it for this L-argument to be valid?

Introduction

Argument Valid
(1) Zeno is a tortoise.
(2) All tortoises are toothless.
�erefore, (C) Zeno is toothless.

Formalisation
(1) Pa
(2) ∀x (Px → Qx)
(C) Qa

Dictionary: a: Zeno. P:. . . is a tortoise. Q: . . . is toothless

What is it for this L-argument to be valid?

Introduction

Validity

Recall the de�nition of validity for L.

Let Γ be a set of sentences of L and ϕ a sentence of L.

De�nition
�e argument with all sentences in Γ as premisses and ϕ as
conclusion is valid i� there is no L-structure under which:
(i) all sentences in Γ are true; and
(ii) ϕ is false.

We use an exactly analogous de�nition for L, replacing ‘L’
everywhere above with ‘L’.
It remains to de�ne: L-structure, truth in an L-structure

Introduction

Validity

Recall the de�nition of validity for L.
Let Γ be a set of sentences of L and ϕ a sentence of L.

De�nition
�e argument with all sentences in Γ as premisses and ϕ as
conclusion is valid i� there is no L-structure under which:
(i) all sentences in Γ are true; and
(ii) ϕ is false.

We use an exactly analogous de�nition for L, replacing ‘L’
everywhere above with ‘L’.
It remains to de�ne: L-structure, truth in an L-structure

Introduction

Validity

Recall the de�nition of validity for L.
Let Γ be a set of sentences of L and ϕ a sentence of L.

De�nition
�e argument with all sentences in Γ as premisses and ϕ as
conclusion is valid i� there is no L-structure under which:
(i) all sentences in Γ are true; and
(ii) ϕ is false.

We use an exactly analogous de�nition for L, replacing ‘L’
everywhere above with ‘L’.
It remains to de�ne: L-structure, truth in an L-structure

Introduction

Validity

Recall the de�nition of validity for L.
Let Γ be a set of sentences of L and ϕ a sentence of L.

De�nition
�e argument with all sentences in Γ as premisses and ϕ as
conclusion is valid i� there is no L-structure under which:
(i) all sentences in Γ are true; and
(ii) ϕ is false.

We use an exactly analogous de�nition for L, replacing ‘L’
everywhere above with ‘L’.

It remains to de�ne: L-structure, truth in an L-structure

Introduction

Validity

Recall the de�nition of validity for L.
Let Γ be a set of sentences of L and ϕ a sentence of L.

De�nition
�e argument with all sentences in Γ as premisses and ϕ as
conclusion is valid i� there is no L-structure under which:
(i) all sentences in Γ are true; and
(ii) ϕ is false.

We use an exactly analogous de�nition for L, replacing ‘L’
everywhere above with ‘L’.

It remains to de�ne: L-structure, truth in an L-structure

Introduction

Validity

Recall the de�nition of validity for L.
Let Γ be a set of sentences of L and ϕ a sentence of L.

De�nition
�e argument with all sentences in Γ as premisses and ϕ as
conclusion is valid i� there is no L-structure under which:
(i) all sentences in Γ are true; and
(ii) ϕ is false.

We use an exactly analogous de�nition for L, replacing ‘L’
everywhere above with ‘L’.
It remains to de�ne: L-structure, truth in an L-structure

Introduction

Structures
Structures interpret non-logical expressions.

L-structures
Non-logical expressions in L: P,Q , R,
An L-structureA assigns each sentence letter a semantic
value (speci�cally, a truth-value: T or F).

L is a richer language.�is calls for richer structures.

L-structures
Non-logical expressions: P,Q, R, . . .

P,Q, R, . . .
⋮

a, b, c, . . .
An L-structureA assigns each predicate and constant a
semantic value (speci�cally, what?).

Introduction

Structures
Structures interpret non-logical expressions.

L-structures
Non-logical expressions in L: P,Q , R,

An L-structureA assigns each sentence letter a semantic
value (speci�cally, a truth-value: T or F).

L is a richer language.�is calls for richer structures.

L-structures
Non-logical expressions: P,Q, R, . . .

P,Q, R, . . .
⋮

a, b, c, . . .
An L-structureA assigns each predicate and constant a
semantic value (speci�cally, what?).

Introduction

Structures
Structures interpret non-logical expressions.

L-structures
Non-logical expressions in L: P,Q , R,
An L-structureA assigns each sentence letter a semantic
value (speci�cally, a truth-value: T or F).

L is a richer language.�is calls for richer structures.

L-structures
Non-logical expressions: P,Q, R, . . .

P,Q, R, . . .
⋮

a, b, c, . . .
An L-structureA assigns each predicate and constant a
semantic value (speci�cally, what?).

Introduction

Structures
Structures interpret non-logical expressions.

L-structures
Non-logical expressions in L: P,Q , R,
An L-structureA assigns each sentence letter a semantic
value (speci�cally, a truth-value: T or F).

L is a richer language.�is calls for richer structures.

L-structures
Non-logical expressions: P,Q, R, . . .

P,Q, R, . . .
⋮

a, b, c, . . .
An L-structureA assigns each predicate and constant a
semantic value (speci�cally, what?).

Introduction

Structures
Structures interpret non-logical expressions.

L-structures
Non-logical expressions in L: P,Q , R,
An L-structureA assigns each sentence letter a semantic
value (speci�cally, a truth-value: T or F).

L is a richer language.�is calls for richer structures.

L-structures
Non-logical expressions: P,Q, R, . . .

P,Q, R, . . .
⋮

a, b, c, . . .
An L-structureA assigns each predicate and constant a
semantic value (speci�cally, what?).

Introduction

Structures
Structures interpret non-logical expressions.

L-structures
Non-logical expressions in L: P,Q , R,
An L-structureA assigns each sentence letter a semantic
value (speci�cally, a truth-value: T or F).

L is a richer language.�is calls for richer structures.

L-structures
Non-logical expressions: P,Q, R, . . .

P,Q, R, . . .
⋮

a, b, c, . . .
An L-structureA assigns each predicate and constant a
semantic value (speci�cally, what?).

Introduction

Structures
Structures interpret non-logical expressions.

L-structures
Non-logical expressions in L: P,Q , R,
An L-structureA assigns each sentence letter a semantic
value (speci�cally, a truth-value: T or F).

L is a richer language.�is calls for richer structures.

L-structures
Non-logical expressions: P,Q, R, . . .

P,Q, R, . . .
⋮

a, b, c, . . .

An L-structureA assigns each predicate and constant a
semantic value (speci�cally, what?).

Introduction

Structures
Structures interpret non-logical expressions.

L-structures
Non-logical expressions in L: P,Q , R,
An L-structureA assigns each sentence letter a semantic
value (speci�cally, a truth-value: T or F).

L is a richer language.�is calls for richer structures.

L-structures
Non-logical expressions: P,Q, R, . . .

P,Q, R, . . .
⋮

a, b, c, . . .
An L-structureA assigns each predicate and constant a
semantic value (speci�cally, what?).

Introduction

I could present all de�nitions on 4 slides. Most slides just help to
motivate these de�nitions.

Semantics in English

Semantics in English
Start with a semantics for simple English sentences.

‘Maggie Smith is an actor.’

�e sentence is true (i.e.: its semantic value is: T).
. . . because of the relationship between the semantic values of its
constituents.

expression semantic value
‘Maggie Smith ’ Maggie Smith
‘is an actor’ the property of being an actor

. . . because Maggie Smith has the property of being an actor.

. . . because ∣‘Maggie Smith ’∣ has ∣‘is an actor’∣. 40

Notation
When e is an expression, we write ∣e∣ for its semantic value.

Semantics in English

Semantics in English
Start with a semantics for simple English sentences.

‘Maggie Smith is an actor.’

�e sentence is true (i.e.: its semantic value is: T).
. . . because of the relationship between the semantic values of its
constituents.

expression semantic value
‘Maggie Smith ’ Maggie Smith
‘is an actor’ the property of being an actor

. . . because Maggie Smith has the property of being an actor.

. . . because ∣‘Maggie Smith ’∣ has ∣‘is an actor’∣. 40

Notation
When e is an expression, we write ∣e∣ for its semantic value.

Semantics in English

Semantics in English
Start with a semantics for simple English sentences.

‘Maggie Smith is an actor.’

�e sentence is true

(i.e.: its semantic value is: T).
. . . because of the relationship between the semantic values of its
constituents.

expression semantic value
‘Maggie Smith ’ Maggie Smith
‘is an actor’ the property of being an actor

. . . because Maggie Smith has the property of being an actor.

. . . because ∣‘Maggie Smith ’∣ has ∣‘is an actor’∣. 40

Notation
When e is an expression, we write ∣e∣ for its semantic value.

Semantics in English

Semantics in English
Start with a semantics for simple English sentences.

‘Maggie Smith is an actor.’

�e sentence is true (i.e.: its semantic value is: T).

. . . because of the relationship between the semantic values of its
constituents.

expression semantic value
‘Maggie Smith ’ Maggie Smith
‘is an actor’ the property of being an actor

. . . because Maggie Smith has the property of being an actor.

. . . because ∣‘Maggie Smith ’∣ has ∣‘is an actor’∣. 40

Notation
When e is an expression, we write ∣e∣ for its semantic value.

Semantics in English

Semantics in English
Start with a semantics for simple English sentences.

‘Maggie Smith is an actor.’

�e sentence is true (i.e.: its semantic value is: T).
. . . because of the relationship between the semantic values of its
constituents.

expression semantic value
‘Maggie Smith ’ Maggie Smith
‘is an actor’ the property of being an actor

. . . because Maggie Smith has the property of being an actor.

. . . because ∣‘Maggie Smith ’∣ has ∣‘is an actor’∣. 40

Notation
When e is an expression, we write ∣e∣ for its semantic value.

Semantics in English

Semantics in English
Start with a semantics for simple English sentences.

‘Maggie Smith is an actor.’

�e sentence is true (i.e.: its semantic value is: T).
. . . because of the relationship between the semantic values of its
constituents.

expression semantic value
‘Maggie Smith ’ Maggie Smith
‘is an actor’ the property of being an actor

. . . because Maggie Smith has the property of being an actor.

. . . because ∣‘Maggie Smith ’∣ has ∣‘is an actor’∣. 40

Notation
When e is an expression, we write ∣e∣ for its semantic value.

Semantics in English

Semantics in English
Start with a semantics for simple English sentences.

‘Maggie Smith is an actor.’

�e sentence is true (i.e.: its semantic value is: T).
. . . because of the relationship between the semantic values of its
constituents.

expression semantic value
‘Maggie Smith ’ Maggie Smith
‘is an actor’ the property of being an actor

. . . because Maggie Smith has the property of being an actor.

. . . because ∣‘Maggie Smith ’∣ has ∣‘is an actor’∣. 40

Notation
When e is an expression, we write ∣e∣ for its semantic value.

Semantics in English

Semantics in English
Start with a semantics for simple English sentences.

‘Maggie Smith is an actor.’

�e sentence is true (i.e.: its semantic value is: T).
. . . because of the relationship between the semantic values of its
constituents.

expression semantic value
‘Maggie Smith ’ Maggie Smith
‘is an actor’ the property of being an actor

. . . because Maggie Smith has the property of being an actor.

. . . because ∣‘Maggie Smith ’∣ has ∣‘is an actor’∣. 40

Notation
When e is an expression, we write ∣e∣ for its semantic value.

Semantics in English

Similarly:

‘Mary likes Maggie Smith’ is true i�
Mary stands in the relation of liking to Maggie Smith

In other words:

∣‘Mary likes Maggie Smith’∣ = T i�
∣‘Mary’∣ stands in ∣‘likes’∣ to ∣‘Maggie Smith’∣

Semantics in English

Similarly:

‘Mary likes Maggie Smith’ is true i�
Mary stands in the relation of liking to Maggie Smith

In other words:

∣‘Mary likes Maggie Smith’∣ = T i�
∣‘Mary’∣ stands in ∣‘likes’∣ to ∣‘Maggie Smith’∣

Semantics in English

Semantic values for English expressions

expression semantic value
designator object

unary predicate property (alias: unary relation)
binary predicate binary relation

Examples
∣‘Maggie Smith’∣ = Maggie Smith
∣‘is an actor’∣ = the property of being an actor
∣‘likes’∣ = the relation of liking

We’ll take this one step further, by saying more about properties
and relations.

Semantics in English

Semantic values for English expressions

expression semantic value
designator object

unary predicate property (alias: unary relation)
binary predicate binary relation

Examples
∣‘Maggie Smith’∣ = Maggie Smith
∣‘is an actor’∣ = the property of being an actor
∣‘likes’∣ = the relation of liking

We’ll take this one step further, by saying more about properties
and relations.

Semantics in English

Semantic values for English expressions

expression semantic value
designator object

unary predicate property (alias: unary relation)
binary predicate binary relation

Examples
∣‘Maggie Smith’∣ = Maggie Smith
∣‘is an actor’∣ = the property of being an actor
∣‘likes’∣ = the relation of liking

We’ll take this one step further, by saying more about properties
and relations.

Semantics in English

Properties

For the purposes here, we identify properties with sets.

Property (alias: unary relation)
A unary relation P is a set of zero or more objects.

Speci�cally, P is the set of objects that have the property.

Informally: d ∈ P indicates that d has property P.

Example
�e property of being an actor

= the set of actors
= {d : d is an actor}
= {Emma Stone, B. Cumberbatch, . . .}

Semantics in English

Properties

For the purposes here, we identify properties with sets.

Property (alias: unary relation)
A unary relation P is a set of zero or more objects.

Speci�cally, P is the set of objects that have the property.

Informally: d ∈ P indicates that d has property P.

Example
�e property of being an actor

= the set of actors
= {d : d is an actor}
= {Emma Stone, B. Cumberbatch, . . .}

Semantics in English

Properties

For the purposes here, we identify properties with sets.

Property (alias: unary relation)
A unary relation P is a set of zero or more objects.

Speci�cally, P is the set of objects that have the property.

Informally: d ∈ P indicates that d has property P.

Example
�e property of being an actor

= the set of actors
= {d : d is an actor}
= {Emma Stone, B. Cumberbatch, . . .}

Semantics in English

Properties

For the purposes here, we identify properties with sets.

Property (alias: unary relation)
A unary relation P is a set of zero or more objects.

Speci�cally, P is the set of objects that have the property.

Informally: d ∈ P indicates that d has property P.

Example
�e property of being an actor

= the set of actors
= {d : d is an actor}
= {Emma Stone, B. Cumberbatch, . . .}

Semantics in English

Properties

For the purposes here, we identify properties with sets.

Property (alias: unary relation)
A unary relation P is a set of zero or more objects.

Speci�cally, P is the set of objects that have the property.

Informally: d ∈ P indicates that d has property P.

Example
�e property of being an actor

= the set of actors
= {d : d is an actor}
= {Emma Stone, B. Cumberbatch, . . .}

Semantics in English

Properties

For the purposes here, we identify properties with sets.

Property (alias: unary relation)
A unary relation P is a set of zero or more objects.

Speci�cally, P is the set of objects that have the property.

Informally: d ∈ P indicates that d has property P.

Example
�e property of being an actor

= the set of actors
= {d : d is an actor}
= {Emma Stone, B. Cumberbatch, . . .}

Semantics in English

Relations
Recall that we identify binary relations with sets of pairs.

Binary relation
A binary relation R is a set of zero or more pairs of objects.

R is the set of pairs ⟨d , e⟩ such that d stands in R to e.

Informally: ⟨d , e⟩ ∈ R indicates that d bears R to e.

Example
�e relation of liking = {⟨d , e⟩ : d likes e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
A quaternary (4-ary) relation is a set of quadruples (4-tuples).
etc.

Semantics in English

Relations
Recall that we identify binary relations with sets of pairs.

Binary relation
A binary relation R is a set of zero or more pairs of objects.

R is the set of pairs ⟨d , e⟩ such that d stands in R to e.

Informally: ⟨d , e⟩ ∈ R indicates that d bears R to e.

Example
�e relation of liking = {⟨d , e⟩ : d likes e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
A quaternary (4-ary) relation is a set of quadruples (4-tuples).
etc.

Semantics in English

Relations
Recall that we identify binary relations with sets of pairs.

Binary relation
A binary relation R is a set of zero or more pairs of objects.

R is the set of pairs ⟨d , e⟩ such that d stands in R to e.

Informally: ⟨d , e⟩ ∈ R indicates that d bears R to e.

Example
�e relation of liking = {⟨d , e⟩ : d likes e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
A quaternary (4-ary) relation is a set of quadruples (4-tuples).
etc.

Semantics in English

Relations
Recall that we identify binary relations with sets of pairs.

Binary relation
A binary relation R is a set of zero or more pairs of objects.

R is the set of pairs ⟨d , e⟩ such that d stands in R to e.

Informally: ⟨d , e⟩ ∈ R indicates that d bears R to e.

Example
�e relation of liking = {⟨d , e⟩ : d likes e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
A quaternary (4-ary) relation is a set of quadruples (4-tuples).
etc.

Semantics in English

Relations
Recall that we identify binary relations with sets of pairs.

Binary relation
A binary relation R is a set of zero or more pairs of objects.

R is the set of pairs ⟨d , e⟩ such that d stands in R to e.

Informally: ⟨d , e⟩ ∈ R indicates that d bears R to e.

Example
�e relation of liking = {⟨d , e⟩ : d likes e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
A quaternary (4-ary) relation is a set of quadruples (4-tuples).
etc.

Semantics in English

Relations
Recall that we identify binary relations with sets of pairs.

Binary relation
A binary relation R is a set of zero or more pairs of objects.

R is the set of pairs ⟨d , e⟩ such that d stands in R to e.

Informally: ⟨d , e⟩ ∈ R indicates that d bears R to e.

Example
�e relation of liking = {⟨d , e⟩ : d likes e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).

A quaternary (4-ary) relation is a set of quadruples (4-tuples).
etc.

Semantics in English

Relations
Recall that we identify binary relations with sets of pairs.

Binary relation
A binary relation R is a set of zero or more pairs of objects.

R is the set of pairs ⟨d , e⟩ such that d stands in R to e.

Informally: ⟨d , e⟩ ∈ R indicates that d bears R to e.

Example
�e relation of liking = {⟨d , e⟩ : d likes e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
A quaternary (4-ary) relation is a set of quadruples (4-tuples).

etc.

Semantics in English

Relations
Recall that we identify binary relations with sets of pairs.

Binary relation
A binary relation R is a set of zero or more pairs of objects.

R is the set of pairs ⟨d , e⟩ such that d stands in R to e.

Informally: ⟨d , e⟩ ∈ R indicates that d bears R to e.

Example
�e relation of liking = {⟨d , e⟩ : d likes e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
A quaternary (4-ary) relation is a set of quadruples (4-tuples).
etc.

Semantics in English

Putting this all together:

‘Maggie Smith is an actor’ is true
i� ∣‘Maggie Smith’∣ has ∣‘is an actor’∣
i� Maggie Smith ∈ the set of actors

Similarly:

‘Mary likes Maggie Smith’ is true
i� ∣‘Mary’∣ stands in ∣‘likes’∣ to ∣‘Maggie Smith’∣
i� ⟨Mary, M. Smith ⟩ ∈ {⟨d , e⟩ ∶ d likes e}

Semantics in English

Putting this all together:

‘Maggie Smith is an actor’ is true

i� ∣‘Maggie Smith’∣ has ∣‘is an actor’∣
i� Maggie Smith ∈ the set of actors

Similarly:

‘Mary likes Maggie Smith’ is true
i� ∣‘Mary’∣ stands in ∣‘likes’∣ to ∣‘Maggie Smith’∣
i� ⟨Mary, M. Smith ⟩ ∈ {⟨d , e⟩ ∶ d likes e}

Semantics in English

Putting this all together:

‘Maggie Smith is an actor’ is true
i� ∣‘Maggie Smith’∣ has ∣‘is an actor’∣

i� Maggie Smith ∈ the set of actors

Similarly:

‘Mary likes Maggie Smith’ is true
i� ∣‘Mary’∣ stands in ∣‘likes’∣ to ∣‘Maggie Smith’∣
i� ⟨Mary, M. Smith ⟩ ∈ {⟨d , e⟩ ∶ d likes e}

Semantics in English

Putting this all together:

‘Maggie Smith is an actor’ is true
i� ∣‘Maggie Smith’∣ has ∣‘is an actor’∣
i� Maggie Smith ∈ the set of actors

Similarly:

‘Mary likes Maggie Smith’ is true
i� ∣‘Mary’∣ stands in ∣‘likes’∣ to ∣‘Maggie Smith’∣
i� ⟨Mary, M. Smith ⟩ ∈ {⟨d , e⟩ ∶ d likes e}

Semantics in English

Putting this all together:

‘Maggie Smith is an actor’ is true
i� ∣‘Maggie Smith’∣ has ∣‘is an actor’∣
i� Maggie Smith ∈ the set of actors

Similarly:

‘Mary likes Maggie Smith’ is true

i� ∣‘Mary’∣ stands in ∣‘likes’∣ to ∣‘Maggie Smith’∣
i� ⟨Mary, M. Smith ⟩ ∈ {⟨d , e⟩ ∶ d likes e}

Semantics in English

Putting this all together:

‘Maggie Smith is an actor’ is true
i� ∣‘Maggie Smith’∣ has ∣‘is an actor’∣
i� Maggie Smith ∈ the set of actors

Similarly:

‘Mary likes Maggie Smith’ is true
i� ∣‘Mary’∣ stands in ∣‘likes’∣ to ∣‘Maggie Smith’∣

i� ⟨Mary, M. Smith ⟩ ∈ {⟨d , e⟩ ∶ d likes e}

Semantics in English

Putting this all together:

‘Maggie Smith is an actor’ is true
i� ∣‘Maggie Smith’∣ has ∣‘is an actor’∣
i� Maggie Smith ∈ the set of actors

Similarly:

‘Mary likes Maggie Smith’ is true
i� ∣‘Mary’∣ stands in ∣‘likes’∣ to ∣‘Maggie Smith’∣
i� ⟨Mary, M. Smith ⟩ ∈ {⟨d , e⟩ ∶ d likes e}

Atomic Sentences

Semantics for atomic L-sentences

�e semantics for atomic L-sentences is similar.

An L-structure speci�es semantic values for L-expressions:

L-expression semantic value
constant: a object: ∣a∣

sentence letter: P truth-value: ∣P∣ (i.e. T or F)
unary predicate letter: P unary relation: ∣P∣ (i.e. a set)
binary predicate letter: P binary relation: ∣P∣ (a set of pairs)

∣Pb∣ = T i� ∣b∣ ∈ ∣P∣
∣Rab∣ = T i� ⟨∣a∣, ∣b∣⟩ ∈ ∣R∣

Notation: ∣e∣A is the semantic value of e in L-structureA.

Atomic Sentences

Semantics for atomic L-sentences

�e semantics for atomic L-sentences is similar.

An L-structure speci�es semantic values for L-expressions:

L-expression semantic value
constant: a object: ∣a∣

sentence letter: P truth-value: ∣P∣ (i.e. T or F)
unary predicate letter: P unary relation: ∣P∣ (i.e. a set)
binary predicate letter: P binary relation: ∣P∣ (a set of pairs)

∣Pb∣ = T i� ∣b∣ ∈ ∣P∣
∣Rab∣ = T i� ⟨∣a∣, ∣b∣⟩ ∈ ∣R∣

Notation: ∣e∣A is the semantic value of e in L-structureA.

Atomic Sentences

Semantics for atomic L-sentences

�e semantics for atomic L-sentences is similar.

An L-structure speci�es semantic values for L-expressions:

L-expression semantic value
constant: a object: ∣a∣

sentence letter: P truth-value: ∣P∣ (i.e. T or F)
unary predicate letter: P unary relation: ∣P∣ (i.e. a set)
binary predicate letter: P binary relation: ∣P∣ (a set of pairs)

∣Pb∣ = T i� ∣b∣ ∈ ∣P∣

∣Rab∣ = T i� ⟨∣a∣, ∣b∣⟩ ∈ ∣R∣

Notation: ∣e∣A is the semantic value of e in L-structureA.

Atomic Sentences

Semantics for atomic L-sentences

�e semantics for atomic L-sentences is similar.

An L-structure speci�es semantic values for L-expressions:

L-expression semantic value
constant: a object: ∣a∣

sentence letter: P truth-value: ∣P∣ (i.e. T or F)
unary predicate letter: P unary relation: ∣P∣ (i.e. a set)
binary predicate letter: P binary relation: ∣P∣ (a set of pairs)

∣Pb∣ = T i� ∣b∣ ∈ ∣P∣
∣Rab∣ = T i� ⟨∣a∣, ∣b∣⟩ ∈ ∣R∣

Notation: ∣e∣A is the semantic value of e in L-structureA.

Atomic Sentences

Semantics for atomic L-sentences

�e semantics for atomic L-sentences is similar.

An L-structure speci�es semantic values for L-expressions:

L-expression semantic value
constant: a object: ∣a∣

sentence letter: P truth-value: ∣P∣ (i.e. T or F)
unary predicate letter: P unary relation: ∣P∣ (i.e. a set)
binary predicate letter: P binary relation: ∣P∣ (a set of pairs)

∣Pb∣ = T i� ∣b∣ ∈ ∣P∣
∣Rab∣ = T i� ⟨∣a∣, ∣b∣⟩ ∈ ∣R∣

Notation: ∣e∣A is the semantic value of e in L-structureA.

Atomic Formulae

Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.

What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.
Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.

Atomic Formulae

Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.
What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.
Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.

Atomic Formulae

Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.
What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.

Pronouns, such as ‘it’, do not.
‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.
Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.

Atomic Formulae

Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.
What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.
Pronouns, such as ‘it’, do not.

‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.
Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.

Atomic Formulae

Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.
What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.
Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.

Atomic Formulae

Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.
What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.
Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.

Atomic Formulae

Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.
What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.

Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.

Atomic Formulae

Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.
What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.
Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.

Atomic Formulae

Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.
What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.
Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an in�nite list.

Example: the assignment α.
x y z x y z x

Mercury Venus Venus Neptune Mars Venus Mars ⋯

Notation
We write ∣x∣α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. ∣x∣α = Mercury; ∣y∣α =Venus; ∣x∣α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an in�nite list.

Example: the assignment α.
x y z x y z x

Mercury Venus Venus Neptune Mars Venus Mars ⋯

Notation
We write ∣x∣α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. ∣x∣α = Mercury; ∣y∣α =Venus; ∣x∣α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an in�nite list.

Example: the assignment α.
x y z x y z x

Mercury Venus Venus Neptune Mars Venus Mars ⋯

Notation
We write ∣x∣α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. ∣x∣α = Mercury; ∣y∣α =Venus; ∣x∣α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an in�nite list.

Example: the assignment α.
x y z x y z x

Mercury Venus Venus Neptune Mars Venus Mars ⋯

Notation
We write ∣x∣α for the object α assigns to x.

We use lower case Greek letters: α, β, γ for assignments.

e.g. ∣x∣α = Mercury; ∣y∣α =Venus; ∣x∣α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an in�nite list.

Example: the assignment α.
x y z x y z x

Mercury Venus Venus Neptune Mars Venus Mars ⋯

Notation
We write ∣x∣α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. ∣x∣α = Mercury; ∣y∣α =Venus; ∣x∣α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an in�nite list.

Example: the assignment α.
x y z x y z x

Mercury Venus Venus Neptune Mars Venus Mars ⋯

Notation
We write ∣x∣α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. ∣x∣α =

Mercury; ∣y∣α =Venus; ∣x∣α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an in�nite list.

Example: the assignment α.
x y z x y z x

Mercury Venus Venus Neptune Mars Venus Mars ⋯

Notation
We write ∣x∣α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. ∣x∣α = Mercury

; ∣y∣α =Venus; ∣x∣α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an in�nite list.

Example: the assignment α.
x y z x y z x

Mercury Venus Venus Neptune Mars Venus Mars ⋯

Notation
We write ∣x∣α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. ∣x∣α = Mercury; ∣y∣α =

Venus; ∣x∣α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an in�nite list.

Example: the assignment α.
x y z x y z x

Mercury Venus Venus Neptune Mars Venus Mars ⋯

Notation
We write ∣x∣α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. ∣x∣α = Mercury; ∣y∣α =Venus

; ∣x∣α = Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an in�nite list.

Example: the assignment α.
x y z x y z x

Mercury Venus Venus Neptune Mars Venus Mars ⋯

Notation
We write ∣x∣α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. ∣x∣α = Mercury; ∣y∣α =Venus; ∣x∣α =

Mars.

Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an in�nite list.

Example: the assignment α.
x y z x y z x

Mercury Venus Venus Neptune Mars Venus Mars ⋯

Notation
We write ∣x∣α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. ∣x∣α = Mercury; ∣y∣α =Venus; ∣x∣α = Mars.

Atomic Formulae

Once x has been assigned an object, the semantics for Px are
much like the semantics for Pa.

We write ∣e∣αA for the semantic value of expression e in the
structureA under the variable assignment α.

∣Px∣αA = T i� ∣x∣α ∈ ∣P∣A (NB: ∣x∣αA = ∣x∣α)
∣Rxy∣αA = T i� ⟨∣x∣α , ∣y∣α⟩ ∈ ∣R∣A

Note: semantic values of constants and predicates are una�ected by the
assignment (e.g. ∣P∣αA = ∣P∣A, ∣a∣αA = ∣a∣A).

∣Rab∣αA = T i� ⟨∣a∣A, ∣b∣A⟩ ∈ ∣R∣A
∣Rxb∣αA = T i� ⟨∣x∣α , ∣b∣A⟩ ∈ ∣R∣A

Similarly for other atomic formulae.

Atomic Formulae

Once x has been assigned an object, the semantics for Px are
much like the semantics for Pa.

We write ∣e∣αA for the semantic value of expression e in the
structureA under the variable assignment α.

∣Px∣αA = T i� ∣x∣α ∈ ∣P∣A (NB: ∣x∣αA = ∣x∣α)
∣Rxy∣αA = T i� ⟨∣x∣α , ∣y∣α⟩ ∈ ∣R∣A

Note: semantic values of constants and predicates are una�ected by the
assignment (e.g. ∣P∣αA = ∣P∣A, ∣a∣αA = ∣a∣A).

∣Rab∣αA = T i� ⟨∣a∣A, ∣b∣A⟩ ∈ ∣R∣A
∣Rxb∣αA = T i� ⟨∣x∣α , ∣b∣A⟩ ∈ ∣R∣A

Similarly for other atomic formulae.

Atomic Formulae

Once x has been assigned an object, the semantics for Px are
much like the semantics for Pa.

We write ∣e∣αA for the semantic value of expression e in the
structureA under the variable assignment α.

∣Px∣αA = T i� ∣x∣α ∈ ∣P∣A (NB: ∣x∣αA = ∣x∣α)

∣Rxy∣αA = T i� ⟨∣x∣α , ∣y∣α⟩ ∈ ∣R∣A

Note: semantic values of constants and predicates are una�ected by the
assignment (e.g. ∣P∣αA = ∣P∣A, ∣a∣αA = ∣a∣A).

∣Rab∣αA = T i� ⟨∣a∣A, ∣b∣A⟩ ∈ ∣R∣A
∣Rxb∣αA = T i� ⟨∣x∣α , ∣b∣A⟩ ∈ ∣R∣A

Similarly for other atomic formulae.

Atomic Formulae

Once x has been assigned an object, the semantics for Px are
much like the semantics for Pa.

We write ∣e∣αA for the semantic value of expression e in the
structureA under the variable assignment α.

∣Px∣αA = T i� ∣x∣α ∈ ∣P∣A (NB: ∣x∣αA = ∣x∣α)
∣Rxy∣αA = T i� ⟨∣x∣α , ∣y∣α⟩ ∈ ∣R∣A

Note: semantic values of constants and predicates are una�ected by the
assignment (e.g. ∣P∣αA = ∣P∣A, ∣a∣αA = ∣a∣A).

∣Rab∣αA = T i� ⟨∣a∣A, ∣b∣A⟩ ∈ ∣R∣A
∣Rxb∣αA = T i� ⟨∣x∣α , ∣b∣A⟩ ∈ ∣R∣A

Similarly for other atomic formulae.

Atomic Formulae

Once x has been assigned an object, the semantics for Px are
much like the semantics for Pa.

We write ∣e∣αA for the semantic value of expression e in the
structureA under the variable assignment α.

∣Px∣αA = T i� ∣x∣α ∈ ∣P∣A (NB: ∣x∣αA = ∣x∣α)
∣Rxy∣αA = T i� ⟨∣x∣α , ∣y∣α⟩ ∈ ∣R∣A

Note: semantic values of constants and predicates are una�ected by the
assignment (e.g. ∣P∣αA = ∣P∣A, ∣a∣αA = ∣a∣A).

∣Rab∣αA = T i� ⟨∣a∣A, ∣b∣A⟩ ∈ ∣R∣A
∣Rxb∣αA = T i� ⟨∣x∣α , ∣b∣A⟩ ∈ ∣R∣A

Similarly for other atomic formulae.

Atomic Formulae

Once x has been assigned an object, the semantics for Px are
much like the semantics for Pa.

We write ∣e∣αA for the semantic value of expression e in the
structureA under the variable assignment α.

∣Px∣αA = T i� ∣x∣α ∈ ∣P∣A (NB: ∣x∣αA = ∣x∣α)
∣Rxy∣αA = T i� ⟨∣x∣α , ∣y∣α⟩ ∈ ∣R∣A

Note: semantic values of constants and predicates are una�ected by the
assignment (e.g. ∣P∣αA = ∣P∣A, ∣a∣αA = ∣a∣A).

∣Rab∣αA = T i� ⟨∣a∣A, ∣b∣A⟩ ∈ ∣R∣A

∣Rxb∣αA = T i� ⟨∣x∣α , ∣b∣A⟩ ∈ ∣R∣A

Similarly for other atomic formulae.

Atomic Formulae

Once x has been assigned an object, the semantics for Px are
much like the semantics for Pa.

We write ∣e∣αA for the semantic value of expression e in the
structureA under the variable assignment α.

∣Px∣αA = T i� ∣x∣α ∈ ∣P∣A (NB: ∣x∣αA = ∣x∣α)
∣Rxy∣αA = T i� ⟨∣x∣α , ∣y∣α⟩ ∈ ∣R∣A

Note: semantic values of constants and predicates are una�ected by the
assignment (e.g. ∣P∣αA = ∣P∣A, ∣a∣αA = ∣a∣A).

∣Rab∣αA = T i� ⟨∣a∣A, ∣b∣A⟩ ∈ ∣R∣A
∣Rxb∣αA = T i� ⟨∣x∣α , ∣b∣A⟩ ∈ ∣R∣A

Similarly for other atomic formulae.

Atomic Formulae

Once x has been assigned an object, the semantics for Px are
much like the semantics for Pa.

We write ∣e∣αA for the semantic value of expression e in the
structureA under the variable assignment α.

∣Px∣αA = T i� ∣x∣α ∈ ∣P∣A (NB: ∣x∣αA = ∣x∣α)
∣Rxy∣αA = T i� ⟨∣x∣α , ∣y∣α⟩ ∈ ∣R∣A

Note: semantic values of constants and predicates are una�ected by the
assignment (e.g. ∣P∣αA = ∣P∣A, ∣a∣αA = ∣a∣A).

∣Rab∣αA = T i� ⟨∣a∣A, ∣b∣A⟩ ∈ ∣R∣A
∣Rxb∣αA = T i� ⟨∣x∣α , ∣b∣A⟩ ∈ ∣R∣A

Similarly for other atomic formulae.

Atomic Formulae

Worked example
Let L-structureA be such that:
∣a∣A = Venus
∣b∣A = Mars
∣P∣A = {Saturn, Mars}
∣R∣A = {⟨Venus, Mars⟩}

Let assignments α and β be such that:
x y z

α: Saturn Mars Jupiter
β: Venus Venus Venus

Compute the following:
∣x∣αA =

Saturn

∣x∣βA =

Venus

∣a∣αA =

Venus

∣Py∣αA =

T

∣Py∣βA =

F

∣Pb∣αA =

T

∣Rxy∣αA =

F

∣Rxy∣βA =

F

∣Rxb∣αA =

F

Atomic Formulae

Worked example
Let L-structureA be such that:
∣a∣A = Venus
∣b∣A = Mars
∣P∣A = {Saturn, Mars}
∣R∣A = {⟨Venus, Mars⟩}

Let assignments α and β be such that:
x y z

α: Saturn Mars Jupiter
β: Venus Venus Venus

Compute the following:
∣x∣αA =

Saturn

∣x∣βA =

Venus

∣a∣αA =

Venus

∣Py∣αA =

T

∣Py∣βA =

F

∣Pb∣αA =

T

∣Rxy∣αA =

F

∣Rxy∣βA =

F

∣Rxb∣αA =

F

Atomic Formulae

Worked example
Let L-structureA be such that:
∣a∣A = Venus
∣b∣A = Mars
∣P∣A = {Saturn, Mars}
∣R∣A = {⟨Venus, Mars⟩}

Let assignments α and β be such that:
x y z

α: Saturn Mars Jupiter
β: Venus Venus Venus

Compute the following:
∣x∣αA = Saturn ∣x∣βA =

Venus

∣a∣αA =

Venus

∣Py∣αA =

T

∣Py∣βA =

F

∣Pb∣αA =

T

∣Rxy∣αA =

F

∣Rxy∣βA =

F

∣Rxb∣αA =

F

Atomic Formulae

Worked example
Let L-structureA be such that:
∣a∣A = Venus
∣b∣A = Mars
∣P∣A = {Saturn, Mars}
∣R∣A = {⟨Venus, Mars⟩}

Let assignments α and β be such that:
x y z

α: Saturn Mars Jupiter
β: Venus Venus Venus

Compute the following:
∣x∣αA = Saturn ∣x∣βA = Venus ∣a∣αA =

Venus

∣Py∣αA =

T

∣Py∣βA =

F

∣Pb∣αA =

T

∣Rxy∣αA =

F

∣Rxy∣βA =

F

∣Rxb∣αA =

F

Atomic Formulae

Worked example
Let L-structureA be such that:
∣a∣A = Venus
∣b∣A = Mars
∣P∣A = {Saturn, Mars}
∣R∣A = {⟨Venus, Mars⟩}

Let assignments α and β be such that:
x y z

α: Saturn Mars Jupiter
β: Venus Venus Venus

Compute the following:
∣x∣αA = Saturn ∣x∣βA = Venus ∣a∣αA = Venus

∣Py∣αA =

T

∣Py∣βA =

F

∣Pb∣αA =

T

∣Rxy∣αA =

F

∣Rxy∣βA =

F

∣Rxb∣αA =

F

Atomic Formulae

Worked example
Let L-structureA be such that:
∣a∣A = Venus
∣b∣A = Mars
∣P∣A = {Saturn, Mars}
∣R∣A = {⟨Venus, Mars⟩}

Let assignments α and β be such that:
x y z

α: Saturn Mars Jupiter
β: Venus Venus Venus

Compute the following:
∣x∣αA = Saturn ∣x∣βA = Venus ∣a∣αA = Venus

∣Py∣αA = T ∣Py∣βA =

F

∣Pb∣αA =

T

∣Rxy∣αA =

F

∣Rxy∣βA =

F

∣Rxb∣αA =

F

Atomic Formulae

Worked example
Let L-structureA be such that:
∣a∣A = Venus
∣b∣A = Mars
∣P∣A = {Saturn, Mars}
∣R∣A = {⟨Venus, Mars⟩}

Let assignments α and β be such that:
x y z

α: Saturn Mars Jupiter
β: Venus Venus Venus

Compute the following:
∣x∣αA = Saturn ∣x∣βA = Venus ∣a∣αA = Venus

∣Py∣αA = T ∣Py∣βA = F ∣Pb∣αA =

T

∣Rxy∣αA =

F

∣Rxy∣βA =

F

∣Rxb∣αA =

F

Atomic Formulae

Worked example
Let L-structureA be such that:
∣a∣A = Venus
∣b∣A =Mars
∣P∣A = {Saturn, Mars}
∣R∣A = {⟨Venus, Mars⟩}

Let assignments α and β be such that:
x y z

α: Saturn Mars Jupiter
β: Venus Venus Venus

Compute the following:
∣x∣αA = Saturn ∣x∣βA = Venus ∣a∣αA = Venus

∣Py∣αA = T ∣Py∣βA = F ∣Pb∣αA = T

∣Rxy∣αA =

F

∣Rxy∣βA =

F

∣Rxb∣αA =

F

Atomic Formulae

Worked example
Let L-structureA be such that:
∣a∣A = Venus
∣b∣A = Mars
∣P∣A = {Saturn, Mars}
∣R∣A = {⟨Venus, Mars⟩}

Let assignments α and β be such that:
x y z

α: Saturn Mars Jupiter
β: Venus Venus Venus

Compute the following:
∣x∣αA = Saturn ∣x∣βA = Venus ∣a∣αA = Venus

∣Py∣αA = T ∣Py∣βA = F ∣Pb∣αA = T

∣Rxy∣αA = F ∣Rxy∣βA =

F

∣Rxb∣αA =

F

Atomic Formulae

Worked example
Let L-structureA be such that:
∣a∣A = Venus
∣b∣A = Mars
∣P∣A = {Saturn, Mars}
∣R∣A = {⟨Venus, Mars⟩}

Let assignments α and β be such that:
x y z

α: Saturn Mars Jupiter
β: Venus Venus Venus

Compute the following:
∣x∣αA = Saturn ∣x∣βA = Venus ∣a∣αA = Venus

∣Py∣αA = T ∣Py∣βA = F ∣Pb∣αA = T

∣Rxy∣αA = F ∣Rxy∣βA = F ∣Rxb∣αA =

F

Atomic Formulae

Worked example
Let L-structureA be such that:
∣a∣A = Venus
∣b∣A =Mars
∣P∣A = {Saturn, Mars}
∣R∣A = {⟨Venus, Mars⟩}

Let assignments α and β be such that:
x y z

α: Saturn Mars Jupiter
β: Venus Venus Venus

Compute the following:
∣x∣αA = Saturn ∣x∣βA = Venus ∣a∣αA = Venus

∣Py∣αA = T ∣Py∣βA = F ∣Pb∣αA = T

∣Rxy∣αA = F ∣Rxy∣βA = F ∣Rxb∣αA = F

Quantifiers

Semantics for quanti�ers

Whether the following sentence is true depends on which things
there are:

Everything is material.

�us the truth of sentences depends on which objects there are
and this needs to be taken into account in determining truth
values.

Quantifiers

In English, the truth-value of a quanti�ed sentence depends on
how widely the quanti�ers range.

Everyone can hear the lecturer.

�e context supplies a ‘domain’ telling us who ‘everyone’ ranges
over. 20

Domain: the set of people in South Schools

Everyone can hear the lecturer. T

Domain: the set of everyone in the world

Everyone can hear the lecturer. F

Quantifiers

In English, the truth-value of a quanti�ed sentence depends on
how widely the quanti�ers range.

Everyone can hear the lecturer.

�e context supplies a ‘domain’ telling us who ‘everyone’ ranges
over. 20

Domain: the set of people in South Schools

Everyone can hear the lecturer. T

Domain: the set of everyone in the world

Everyone can hear the lecturer. F

Quantifiers

In English, the truth-value of a quanti�ed sentence depends on
how widely the quanti�ers range.

Everyone can hear the lecturer.

�e context supplies a ‘domain’ telling us who ‘everyone’ ranges
over. 20

Domain: the set of people in South Schools

Everyone can hear the lecturer. T

Domain: the set of everyone in the world

Everyone can hear the lecturer. F

Quantifiers

In English, the truth-value of a quanti�ed sentence depends on
how widely the quanti�ers range.

Everyone can hear the lecturer.

�e context supplies a ‘domain’ telling us who ‘everyone’ ranges
over. 20

Domain: the set of people in South Schools

Everyone can hear the lecturer.

T

Domain: the set of everyone in the world

Everyone can hear the lecturer. F

Quantifiers

In English, the truth-value of a quanti�ed sentence depends on
how widely the quanti�ers range.

Everyone can hear the lecturer.

�e context supplies a ‘domain’ telling us who ‘everyone’ ranges
over. 20

Domain: the set of people in South Schools

Everyone can hear the lecturer. T

Domain: the set of everyone in the world

Everyone can hear the lecturer. F

Quantifiers

In English, the truth-value of a quanti�ed sentence depends on
how widely the quanti�ers range.

Everyone can hear the lecturer.

�e context supplies a ‘domain’ telling us who ‘everyone’ ranges
over. 20

Domain: the set of people in South Schools

Everyone can hear the lecturer. T

Domain: the set of everyone in the world

Everyone can hear the lecturer.

F

Quantifiers

In English, the truth-value of a quanti�ed sentence depends on
how widely the quanti�ers range.

Everyone can hear the lecturer.

�e context supplies a ‘domain’ telling us who ‘everyone’ ranges
over. 20

Domain: the set of people in South Schools

Everyone can hear the lecturer. T

Domain: the set of everyone in the world

Everyone can hear the lecturer. F

Quantifiers

An L-structureA speci�es a non-empty set DA as the domain.

An assignment overA assigns a member of DA to each variable.

Semantics for ∀/∃ (�rst approximation):
∣∀xPx∣A = T
i� every member of DA is in ∣P∣A
i� every assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� every assignment α overA is such that ∣Px∣αA = T

Similarly:

∣∃xPx∣A = T
i� some member of DA is in ∣P∣A
i� some assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� some assignment α overA is such that ∣Px∣αA = T

�is is correct but the general case is more complex.

Quantifiers

An L-structureA speci�es a non-empty set DA as the domain.
An assignment overA assigns a member of DA to each variable.

Semantics for ∀/∃ (�rst approximation):
∣∀xPx∣A = T
i� every member of DA is in ∣P∣A
i� every assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� every assignment α overA is such that ∣Px∣αA = T

Similarly:

∣∃xPx∣A = T
i� some member of DA is in ∣P∣A
i� some assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� some assignment α overA is such that ∣Px∣αA = T

�is is correct but the general case is more complex.

Quantifiers

An L-structureA speci�es a non-empty set DA as the domain.
An assignment overA assigns a member of DA to each variable.

Semantics for ∀/∃ (�rst approximation):
∣∀xPx∣A = T
i� every member of DA is in ∣P∣A

i� every assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� every assignment α overA is such that ∣Px∣αA = T

Similarly:

∣∃xPx∣A = T
i� some member of DA is in ∣P∣A
i� some assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� some assignment α overA is such that ∣Px∣αA = T

�is is correct but the general case is more complex.

Quantifiers

An L-structureA speci�es a non-empty set DA as the domain.
An assignment overA assigns a member of DA to each variable.

Semantics for ∀/∃ (�rst approximation):
∣∀xPx∣A = T
i� every member of DA is in ∣P∣A
i� every assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A

i� every assignment α overA is such that ∣Px∣αA = T

Similarly:

∣∃xPx∣A = T
i� some member of DA is in ∣P∣A
i� some assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� some assignment α overA is such that ∣Px∣αA = T

�is is correct but the general case is more complex.

Quantifiers

An L-structureA speci�es a non-empty set DA as the domain.
An assignment overA assigns a member of DA to each variable.

Semantics for ∀/∃ (�rst approximation):
∣∀xPx∣A = T
i� every member of DA is in ∣P∣A
i� every assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� every assignment α overA is such that ∣Px∣αA = T

Similarly:

∣∃xPx∣A = T
i� some member of DA is in ∣P∣A
i� some assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� some assignment α overA is such that ∣Px∣αA = T

�is is correct but the general case is more complex.

Quantifiers

An L-structureA speci�es a non-empty set DA as the domain.
An assignment overA assigns a member of DA to each variable.

Semantics for ∀/∃ (�rst approximation):
∣∀xPx∣A = T
i� every member of DA is in ∣P∣A
i� every assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� every assignment α overA is such that ∣Px∣αA = T

Similarly:

∣∃xPx∣A = T
i� some member of DA is in ∣P∣A

i� some assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� some assignment α overA is such that ∣Px∣αA = T

�is is correct but the general case is more complex.

Quantifiers

An L-structureA speci�es a non-empty set DA as the domain.
An assignment overA assigns a member of DA to each variable.

Semantics for ∀/∃ (�rst approximation):
∣∀xPx∣A = T
i� every member of DA is in ∣P∣A
i� every assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� every assignment α overA is such that ∣Px∣αA = T

Similarly:

∣∃xPx∣A = T
i� some member of DA is in ∣P∣A
i� some assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A

i� some assignment α overA is such that ∣Px∣αA = T

�is is correct but the general case is more complex.

Quantifiers

An L-structureA speci�es a non-empty set DA as the domain.
An assignment overA assigns a member of DA to each variable.

Semantics for ∀/∃ (�rst approximation):
∣∀xPx∣A = T
i� every member of DA is in ∣P∣A
i� every assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� every assignment α overA is such that ∣Px∣αA = T

Similarly:

∣∃xPx∣A = T
i� some member of DA is in ∣P∣A
i� some assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� some assignment α overA is such that ∣Px∣αA = T

�is is correct but the general case is more complex.

Quantifiers

An L-structureA speci�es a non-empty set DA as the domain.
An assignment overA assigns a member of DA to each variable.

Semantics for ∀/∃ (�rst approximation):
∣∀xPx∣A = T
i� every member of DA is in ∣P∣A
i� every assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� every assignment α overA is such that ∣Px∣αA = T

Similarly:

∣∃xPx∣A = T
i� some member of DA is in ∣P∣A
i� some assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� some assignment α overA is such that ∣Px∣αA = T

�is is correct but the general case is more complex.

Quantifiers

�e semantics of quanti�ers is complicated by the need to deal
with multiple quanti�ers in sentences such as ∀x∃yRxy.

Suppose we try to evaluate this as before inA with domain DA.

∣∀x∃yRxy∣A = T
i� every assignment α overA is such that ∣∃yRxy∣αA = T

To progress any further we need to be able evaluate ∃yRxy under
an assignment α of an object to x.

Quantifiers

�e semantics of quanti�ers is complicated by the need to deal
with multiple quanti�ers in sentences such as ∀x∃yRxy.

Suppose we try to evaluate this as before inA with domain DA.

∣∀x∃yRxy∣A = T
i� every assignment α overA is such that ∣∃yRxy∣αA = T

To progress any further we need to be able evaluate ∃yRxy under
an assignment α of an object to x.

Quantifiers

�e semantics of quanti�ers is complicated by the need to deal
with multiple quanti�ers in sentences such as ∀x∃yRxy.

Suppose we try to evaluate this as before inA with domain DA.

∣∀x∃yRxy∣A = T
i� every assignment α overA is such that ∣∃yRxy∣αA = T

To progress any further we need to be able evaluate ∃yRxy under
an assignment α of an object to x.

Quantifiers

�e semantics of quanti�ers is complicated by the need to deal
with multiple quanti�ers in sentences such as ∀x∃yRxy.

Suppose we try to evaluate this as before inA with domain DA.

∣∀x∃yRxy∣A = T
i� every assignment α overA is such that ∣∃yRxy∣αA = T

To progress any further we need to be able evaluate ∃yRxy under
an assignment α of an object to x.

Quantifiers

How to determine ∣∃yRxy∣αA?

∣∃yRxy∣αA = T

i� some d in DA is such that ⟨∣x∣α , d⟩ ∈ ∣R∣A
i� some assignment β overA is such that ⟨∣x∣α , ∣y∣β⟩ ∈ ∣R∣A

We don’t have to keep track of multiple assignments:

Say that β di�ers from α in y at most if ∣v∣α = ∣v∣β for all variables v with
the possible exception of y.

∣∃yRxy∣αA = T

i� some assignment β overA which di�ers from α in y at most
is such that ⟨∣x∣α , ∣y∣β⟩ ∈ ∣R∣A
i� some assignment β overA which di�ers from α in y at most is such that
∣Rxy∣βA = T

Quantifiers

How to determine ∣∃yRxy∣αA?

∣∃yRxy∣αA = T

i� some d in DA is such that ⟨∣x∣α , d⟩ ∈ ∣R∣A

i� some assignment β overA is such that ⟨∣x∣α , ∣y∣β⟩ ∈ ∣R∣A

We don’t have to keep track of multiple assignments:

Say that β di�ers from α in y at most if ∣v∣α = ∣v∣β for all variables v with
the possible exception of y.

∣∃yRxy∣αA = T

i� some assignment β overA which di�ers from α in y at most
is such that ⟨∣x∣α , ∣y∣β⟩ ∈ ∣R∣A
i� some assignment β overA which di�ers from α in y at most is such that
∣Rxy∣βA = T

Quantifiers

How to determine ∣∃yRxy∣αA?

∣∃yRxy∣αA = T

i� some d in DA is such that ⟨∣x∣α , d⟩ ∈ ∣R∣A
i� some assignment β overA is such that ⟨∣x∣α , ∣y∣β⟩ ∈ ∣R∣A

We don’t have to keep track of multiple assignments:

Say that β di�ers from α in y at most if ∣v∣α = ∣v∣β for all variables v with
the possible exception of y.

∣∃yRxy∣αA = T

i� some assignment β overA which di�ers from α in y at most
is such that ⟨∣x∣α , ∣y∣β⟩ ∈ ∣R∣A
i� some assignment β overA which di�ers from α in y at most is such that
∣Rxy∣βA = T

Quantifiers

How to determine ∣∃yRxy∣αA?

∣∃yRxy∣αA = T

i� some d in DA is such that ⟨∣x∣α , d⟩ ∈ ∣R∣A
i� some assignment β overA is such that ⟨∣x∣α , ∣y∣β⟩ ∈ ∣R∣A

We don’t have to keep track of multiple assignments:

Say that β di�ers from α in y at most if ∣v∣α = ∣v∣β for all variables v with
the possible exception of y.

∣∃yRxy∣αA = T

i� some assignment β overA which di�ers from α in y at most
is such that ⟨∣x∣α , ∣y∣β⟩ ∈ ∣R∣A
i� some assignment β overA which di�ers from α in y at most is such that
∣Rxy∣βA = T

Quantifiers

How to determine ∣∃yRxy∣αA?

∣∃yRxy∣αA = T

i� some d in DA is such that ⟨∣x∣α , d⟩ ∈ ∣R∣A
i� some assignment β overA is such that ⟨∣x∣α , ∣y∣β⟩ ∈ ∣R∣A

We don’t have to keep track of multiple assignments:

Say that β di�ers from α in y at most if ∣v∣α = ∣v∣β for all variables v with
the possible exception of y.

∣∃yRxy∣αA = T

i� some assignment β overA which di�ers from α in y at most
is such that ⟨∣x∣α , ∣y∣β⟩ ∈ ∣R∣A

i� some assignment β overA which di�ers from α in y at most is such that
∣Rxy∣βA = T

Quantifiers

How to determine ∣∃yRxy∣αA?

∣∃yRxy∣αA = T

i� some d in DA is such that ⟨∣x∣α , d⟩ ∈ ∣R∣A
i� some assignment β overA is such that ⟨∣x∣α , ∣y∣β⟩ ∈ ∣R∣A

We don’t have to keep track of multiple assignments:

Say that β di�ers from α in y at most if ∣v∣α = ∣v∣β for all variables v with
the possible exception of y.

∣∃yRxy∣αA = T

i� some assignment β overA which di�ers from α in y at most
is such that ⟨∣x∣α , ∣y∣β⟩ ∈ ∣R∣A

i� some assignment β overA which di�ers from α in y at most is such that
∣Rxy∣βA = T

Quantifiers

How to determine ∣∃yRxy∣αA?

∣∃yRxy∣αA = T

i� some d in DA is such that ⟨∣x∣α , d⟩ ∈ ∣R∣A
i� some assignment β overA is such that ⟨∣x∣α , ∣y∣β⟩ ∈ ∣R∣A

We don’t have to keep track of multiple assignments:

Say that β di�ers from α in y at most if ∣v∣α = ∣v∣β for all variables v with
the possible exception of y.

∣∃yRxy∣αA = T

i� some assignment β overA which di�ers from α in y at most
is such that ⟨∣x∣β , ∣y∣β⟩ ∈ ∣R∣A

i� some assignment β overA which di�ers from α in y at most is such that
∣Rxy∣βA = T

Quantifiers

How to determine ∣∃yRxy∣αA?

∣∃yRxy∣αA = T

i� some d in DA is such that ⟨∣x∣α , d⟩ ∈ ∣R∣A
i� some assignment β overA is such that ⟨∣x∣α , ∣y∣β⟩ ∈ ∣R∣A

We don’t have to keep track of multiple assignments:

Say that β di�ers from α in y at most if ∣v∣α = ∣v∣β for all variables v with
the possible exception of y.

∣∃yRxy∣αA = T

i� some assignment β overA which di�ers from α in y at most
is such that ⟨∣x∣β , ∣y∣β⟩ ∈ ∣R∣A
i� some assignment β overA which di�ers from α in y at most is such that
∣Rxy∣βA = T

Quantifiers

L-structures

Here’s the full speci�cation of an L-structure.

An L-structureA supplies two things
(1) a domain: a non-empty set DA
(2) a semantic value for each predicate and constant.

L-expression semantic value inA
constant: a object: ∣a∣A in DA

sentence letter: P truth-value: ∣P∣A (= T or F)
unary predicate letter: P unary relation: ∣P∣A (i.e. a set)
binary predicate letter: P binary relation: ∣P∣A (a set of pairs)
ternary predicate letter: P ternary relation: ∣P∣A (a set of triples)

etc.

Quantifiers

L-structures

Here’s the full speci�cation of an L-structure.

An L-structureA supplies two things

(1) a domain: a non-empty set DA
(2) a semantic value for each predicate and constant.

L-expression semantic value inA
constant: a object: ∣a∣A in DA

sentence letter: P truth-value: ∣P∣A (= T or F)
unary predicate letter: P unary relation: ∣P∣A (i.e. a set)
binary predicate letter: P binary relation: ∣P∣A (a set of pairs)
ternary predicate letter: P ternary relation: ∣P∣A (a set of triples)

etc.

Quantifiers

L-structures

Here’s the full speci�cation of an L-structure.

An L-structureA supplies two things
(1) a domain: a non-empty set DA

(2) a semantic value for each predicate and constant.

L-expression semantic value inA
constant: a object: ∣a∣A in DA

sentence letter: P truth-value: ∣P∣A (= T or F)
unary predicate letter: P unary relation: ∣P∣A (i.e. a set)
binary predicate letter: P binary relation: ∣P∣A (a set of pairs)
ternary predicate letter: P ternary relation: ∣P∣A (a set of triples)

etc.

Quantifiers

L-structures

Here’s the full speci�cation of an L-structure.

An L-structureA supplies two things
(1) a domain: a non-empty set DA
(2) a semantic value for each predicate and constant.

L-expression semantic value inA
constant: a object: ∣a∣A in DA

sentence letter: P truth-value: ∣P∣A (= T or F)
unary predicate letter: P unary relation: ∣P∣A (i.e. a set)
binary predicate letter: P binary relation: ∣P∣A (a set of pairs)
ternary predicate letter: P ternary relation: ∣P∣A (a set of triples)

etc.

Quantifiers

L-structures

Here’s the full speci�cation of an L-structure.

An L-structureA supplies two things
(1) a domain: a non-empty set DA
(2) a semantic value for each predicate and constant.

L-expression semantic value inA
constant: a object: ∣a∣A in DA

sentence letter: P truth-value: ∣P∣A (= T or F)
unary predicate letter: P unary relation: ∣P∣A (i.e. a set)
binary predicate letter: P binary relation: ∣P∣A (a set of pairs)
ternary predicate letter: P ternary relation: ∣P∣A (a set of triples)

etc.

Quantifiers

Summary of semantics of L

LetA be an L-structure and α an assignment overA.

Atomic formulae
Let Φn be a n-ary predicate letter (n >) and let t, t, . . . be variables or
constants.

∣Φn
∣
α
A is the n-ary relation assigned to Φ

n byA.
∣t∣αA is the object t denotes inA if t is a constant.
∣t∣αA is the object assigned to t by α if t is a variable.

(i) ∣Φt∣αA = T if and only if ∣t∣αA ∈ ∣Φ∣A
∣Φtt∣αA = T if and only if ⟨∣t∣αA, ∣t∣

α
A⟩ ∈ ∣Φ

∣A

∣Φttt∣αA = T if and only if ⟨∣t∣αA, ∣t∣
α
A, ∣t∣

α
A⟩ ∈ ∣Φ

∣A

etc.

Quantifiers

Summary of semantics of L

LetA be an L-structure and α an assignment overA.

Atomic formulae
Let Φn be a n-ary predicate letter (n >) and let t, t, . . . be variables or
constants.

∣Φn
∣
α
A is the n-ary relation assigned to Φ

n byA.
∣t∣αA is the object t denotes inA if t is a constant.
∣t∣αA is the object assigned to t by α if t is a variable.

(i) ∣Φt∣αA = T if and only if ∣t∣αA ∈ ∣Φ∣A
∣Φtt∣αA = T if and only if ⟨∣t∣αA, ∣t∣

α
A⟩ ∈ ∣Φ

∣A

∣Φttt∣αA = T if and only if ⟨∣t∣αA, ∣t∣
α
A, ∣t∣

α
A⟩ ∈ ∣Φ

∣A

etc.

Quantifiers

Summary of semantics of L

LetA be an L-structure and α an assignment overA.

Atomic formulae
Let Φn be a n-ary predicate letter (n >) and let t, t, . . . be variables or
constants.

∣Φn
∣
α
A is the n-ary relation assigned to Φ

n byA.

∣t∣αA is the object t denotes inA if t is a constant.
∣t∣αA is the object assigned to t by α if t is a variable.

(i) ∣Φt∣αA = T if and only if ∣t∣αA ∈ ∣Φ∣A
∣Φtt∣αA = T if and only if ⟨∣t∣αA, ∣t∣

α
A⟩ ∈ ∣Φ

∣A

∣Φttt∣αA = T if and only if ⟨∣t∣αA, ∣t∣
α
A, ∣t∣

α
A⟩ ∈ ∣Φ

∣A

etc.

Quantifiers

Summary of semantics of L

LetA be an L-structure and α an assignment overA.

Atomic formulae
Let Φn be a n-ary predicate letter (n >) and let t, t, . . . be variables or
constants.

∣Φn
∣
α
A is the n-ary relation assigned to Φ

n byA.
∣t∣αA is the object t denotes inA if t is a constant.
∣t∣αA is the object assigned to t by α if t is a variable.

(i) ∣Φt∣αA = T if and only if ∣t∣αA ∈ ∣Φ∣A

∣Φtt∣αA = T if and only if ⟨∣t∣αA, ∣t∣
α
A⟩ ∈ ∣Φ

∣A

∣Φttt∣αA = T if and only if ⟨∣t∣αA, ∣t∣
α
A, ∣t∣

α
A⟩ ∈ ∣Φ

∣A

etc.

Quantifiers

Summary of semantics of L

LetA be an L-structure and α an assignment overA.

Atomic formulae
Let Φn be a n-ary predicate letter (n >) and let t, t, . . . be variables or
constants.

∣Φn
∣
α
A is the n-ary relation assigned to Φ

n byA.
∣t∣αA is the object t denotes inA if t is a constant.
∣t∣αA is the object assigned to t by α if t is a variable.

(i) ∣Φt∣αA = T if and only if ∣t∣αA ∈ ∣Φ∣A
∣Φtt∣αA = T if and only if ⟨∣t∣αA, ∣t∣

α
A⟩ ∈ ∣Φ

∣A

∣Φttt∣αA = T if and only if ⟨∣t∣αA, ∣t∣
α
A, ∣t∣

α
A⟩ ∈ ∣Φ

∣A

etc.

Quantifiers

Summary of semantics of L

LetA be an L-structure and α an assignment overA.

Atomic formulae
Let Φn be a n-ary predicate letter (n >) and let t, t, . . . be variables or
constants.

∣Φn
∣
α
A is the n-ary relation assigned to Φ

n byA.
∣t∣αA is the object t denotes inA if t is a constant.
∣t∣αA is the object assigned to t by α if t is a variable.

(i) ∣Φt∣αA = T if and only if ∣t∣αA ∈ ∣Φ∣A
∣Φtt∣αA = T if and only if ⟨∣t∣αA, ∣t∣

α
A⟩ ∈ ∣Φ

∣A

∣Φttt∣αA = T if and only if ⟨∣t∣αA, ∣t∣
α
A, ∣t∣

α
A⟩ ∈ ∣Φ

∣A

etc.

Quantifiers

Summary of semantics of L

LetA be an L-structure and α an assignment overA.

Atomic formulae
Let Φn be a n-ary predicate letter (n >) and let t, t, . . . be variables or
constants.

∣Φn
∣
α
A is the n-ary relation assigned to Φ

n byA.
∣t∣αA is the object t denotes inA if t is a constant.
∣t∣αA is the object assigned to t by α if t is a variable.

(i) ∣Φt∣αA = T if and only if ∣t∣αA ∈ ∣Φ∣A
∣Φtt∣αA = T if and only if ⟨∣t∣αA, ∣t∣

α
A⟩ ∈ ∣Φ

∣A

∣Φttt∣αA = T if and only if ⟨∣t∣αA, ∣t∣
α
A, ∣t∣

α
A⟩ ∈ ∣Φ

∣A

etc.

Quantifiers

�e semantics for connectives are just like those for L.

Semantics for connectives
(ii) ∣¬ϕ∣αA = T if and only if ∣ϕ∣αA = F.
(iii) ∣ϕ ∧ ψ∣αA = T if and only if ∣ϕ∣αA = T and ∣ψ∣αA = T.
(iv) ∣ϕ ∨ ψ∣αA = T if and only if ∣ϕ∣αA = T or ∣ψ∣αA = T.
(v) ∣ϕ → ψ∣αA = T if and only if ∣ϕ∣αA = F or ∣ψ∣αA = T.
(vi) ∣ϕ↔ ψ∣αA = T if and only if ∣ϕ∣αA = ∣ψ∣αA.

10

Quantifiers

�ese are the semantic clauses for ∀v and ∃v.

Quanti�ers
(vii) ∣∀v ϕ∣αA = T if and only if ∣ϕ∣βA = T for all variable

assignments β overA di�ering from α in v at most.
(viii) ∣∃v ϕ∣αA = T if and only if ∣ϕ∣βA = T for at least one variable

assignment β overA di�ering from α in v at most.

�ese clauses determine the truth value of any formula in a
structureA under some variable assignment α overA
inductively.

However, we lack a simple decision procedure (in contrast to L
and the truth table method).

Quantifiers

�ese are the semantic clauses for ∀v and ∃v.

Quanti�ers
(vii) ∣∀v ϕ∣αA = T if and only if ∣ϕ∣βA = T for all variable

assignments β overA di�ering from α in v at most.

(viii) ∣∃v ϕ∣αA = T if and only if ∣ϕ∣βA = T for at least one variable
assignment β overA di�ering from α in v at most.

�ese clauses determine the truth value of any formula in a
structureA under some variable assignment α overA
inductively.

However, we lack a simple decision procedure (in contrast to L
and the truth table method).

Quantifiers

�ese are the semantic clauses for ∀v and ∃v.

Quanti�ers
(vii) ∣∀v ϕ∣αA = T if and only if ∣ϕ∣βA = T for all variable

assignments β overA di�ering from α in v at most.
(viii) ∣∃v ϕ∣αA = T if and only if ∣ϕ∣βA = T for at least one variable

assignment β overA di�ering from α in v at most.

�ese clauses determine the truth value of any formula in a
structureA under some variable assignment α overA
inductively.

However, we lack a simple decision procedure (in contrast to L
and the truth table method).

Quantifiers

�ese are the semantic clauses for ∀v and ∃v.

Quanti�ers
(vii) ∣∀v ϕ∣αA = T if and only if ∣ϕ∣βA = T for all variable

assignments β overA di�ering from α in v at most.
(viii) ∣∃v ϕ∣αA = T if and only if ∣ϕ∣βA = T for at least one variable

assignment β overA di�ering from α in v at most.

�ese clauses determine the truth value of any formula in a
structureA under some variable assignment α overA
inductively.

However, we lack a simple decision procedure (in contrast to L
and the truth table method).

Quantifiers

�ese are the semantic clauses for ∀v and ∃v.

Quanti�ers
(vii) ∣∀v ϕ∣αA = T if and only if ∣ϕ∣βA = T for all variable

assignments β overA di�ering from α in v at most.
(viii) ∣∃v ϕ∣αA = T if and only if ∣ϕ∣βA = T for at least one variable

assignment β overA di�ering from α in v at most.

�ese clauses determine the truth value of any formula in a
structureA under some variable assignment α overA
inductively.

However, we lack a simple decision procedure (in contrast to L
and the truth table method).

Quantifiers

Truth
We haven’t yet said what it is for a sentence to be true in an
L-structureA.

We’ve said what it is for a formula to be true in an L-structureA
under an assignment overA.

(We’ve de�ned ∣ϕ∣αA; we want now to de�ne ∣ϕ∣A.)

Fact about sentences
�e truth-value of a sentence does not depend on the assignment.
For α and β overA: ∣ϕ∣αA = ∣ϕ∣βA (when ϕ is a sentence).

A sentence ϕ is true in an L-structureA (in symbols: ∣ϕ∣A = T)
i� ∣ϕ∣αA = T for all variable assignments α overA.

equivalently: ∣ϕ∣αA = T for some variable assignment α overA.

Now you know what truth is.

Quantifiers

Truth
We haven’t yet said what it is for a sentence to be true in an
L-structureA.

We’ve said what it is for a formula to be true in an L-structureA
under an assignment overA.

(We’ve de�ned ∣ϕ∣αA; we want now to de�ne ∣ϕ∣A.)

Fact about sentences
�e truth-value of a sentence does not depend on the assignment.
For α and β overA: ∣ϕ∣αA = ∣ϕ∣βA (when ϕ is a sentence).

A sentence ϕ is true in an L-structureA (in symbols: ∣ϕ∣A = T)
i� ∣ϕ∣αA = T for all variable assignments α overA.

equivalently: ∣ϕ∣αA = T for some variable assignment α overA.

Now you know what truth is.

Quantifiers

Truth
We haven’t yet said what it is for a sentence to be true in an
L-structureA.

We’ve said what it is for a formula to be true in an L-structureA
under an assignment overA.

(We’ve de�ned ∣ϕ∣αA; we want now to de�ne ∣ϕ∣A.)

Fact about sentences
�e truth-value of a sentence does not depend on the assignment.
For α and β overA: ∣ϕ∣αA = ∣ϕ∣βA (when ϕ is a sentence).

A sentence ϕ is true in an L-structureA (in symbols: ∣ϕ∣A = T)
i� ∣ϕ∣αA = T for all variable assignments α overA.

equivalently: ∣ϕ∣αA = T for some variable assignment α overA.

Now you know what truth is.

Quantifiers

Truth
We haven’t yet said what it is for a sentence to be true in an
L-structureA.

We’ve said what it is for a formula to be true in an L-structureA
under an assignment overA.

(We’ve de�ned ∣ϕ∣αA; we want now to de�ne ∣ϕ∣A.)

Fact about sentences
�e truth-value of a sentence does not depend on the assignment.

For α and β overA: ∣ϕ∣αA = ∣ϕ∣βA (when ϕ is a sentence).

A sentence ϕ is true in an L-structureA (in symbols: ∣ϕ∣A = T)
i� ∣ϕ∣αA = T for all variable assignments α overA.

equivalently: ∣ϕ∣αA = T for some variable assignment α overA.

Now you know what truth is.

Quantifiers

Truth
We haven’t yet said what it is for a sentence to be true in an
L-structureA.

We’ve said what it is for a formula to be true in an L-structureA
under an assignment overA.

(We’ve de�ned ∣ϕ∣αA; we want now to de�ne ∣ϕ∣A.)

Fact about sentences
�e truth-value of a sentence does not depend on the assignment.
For α and β overA: ∣ϕ∣αA = ∣ϕ∣βA (when ϕ is a sentence).

A sentence ϕ is true in an L-structureA (in symbols: ∣ϕ∣A = T)
i� ∣ϕ∣αA = T for all variable assignments α overA.

equivalently: ∣ϕ∣αA = T for some variable assignment α overA.

Now you know what truth is.

Quantifiers

Truth
We haven’t yet said what it is for a sentence to be true in an
L-structureA.

We’ve said what it is for a formula to be true in an L-structureA
under an assignment overA.

(We’ve de�ned ∣ϕ∣αA; we want now to de�ne ∣ϕ∣A.)

Fact about sentences
�e truth-value of a sentence does not depend on the assignment.
For α and β overA: ∣ϕ∣αA = ∣ϕ∣βA (when ϕ is a sentence).

A sentence ϕ is true in an L-structureA (in symbols: ∣ϕ∣A = T)
i� ∣ϕ∣αA = T for all variable assignments α overA.

equivalently: ∣ϕ∣αA = T for some variable assignment α overA.

Now you know what truth is.

Quantifiers

Truth
We haven’t yet said what it is for a sentence to be true in an
L-structureA.

We’ve said what it is for a formula to be true in an L-structureA
under an assignment overA.

(We’ve de�ned ∣ϕ∣αA; we want now to de�ne ∣ϕ∣A.)

Fact about sentences
�e truth-value of a sentence does not depend on the assignment.
For α and β overA: ∣ϕ∣αA = ∣ϕ∣βA (when ϕ is a sentence).

A sentence ϕ is true in an L-structureA (in symbols: ∣ϕ∣A = T)
i� ∣ϕ∣αA = T for all variable assignments α overA.

equivalently: ∣ϕ∣αA = T for some variable assignment α overA.

Now you know what truth is.

Quantifiers

Truth
We haven’t yet said what it is for a sentence to be true in an
L-structureA.

We’ve said what it is for a formula to be true in an L-structureA
under an assignment overA.

(We’ve de�ned ∣ϕ∣αA; we want now to de�ne ∣ϕ∣A.)

Fact about sentences
�e truth-value of a sentence does not depend on the assignment.
For α and β overA: ∣ϕ∣αA = ∣ϕ∣βA (when ϕ is a sentence).

A sentence ϕ is true in an L-structureA (in symbols: ∣ϕ∣A = T)
i� ∣ϕ∣αA = T for all variable assignments α overA.

equivalently: ∣ϕ∣αA = T for some variable assignment α overA.

Now you know what truth is.

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(((P ∧ Q)→ (P ∨ ¬R))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(((P ∧ Q)→ (P ∨ ¬R))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬

(((P ∧ Q)→ (P ∨ ¬R))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(

((P ∧ Q)→ (P ∨ ¬R))

↔

¬((P ∨ R) ∨ R)

)

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(

((P ∧ Q)→ (P ∨ ¬R))

↔ ¬

((P ∨ R) ∨ R)

)

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(

((P ∧ Q)→ (P ∨ ¬R))

↔ ¬(

(P ∨ R)

∨

R

))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(

((P ∧ Q)→ (P ∨ ¬R))

↔ ¬(

(P ∨ R)

∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(

((P ∧ Q)→ (P ∨ ¬R))

↔ ¬((

P

∨

R

) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(

((P ∧ Q)→ (P ∨ ¬R))

↔ ¬((

P

∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(

((P ∧ Q)→ (P ∨ ¬R))

↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬((

(P ∧ Q)

→

(P ∨ ¬R)

)↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬((

(P ∧ Q)

→ (

P

∨

¬R

))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬((

(P ∧ Q)

→ (P ∨

¬R

))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬((

(P ∧ Q)

→ (P ∨ ¬

R

))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬((

(P ∧ Q)

→ (P ∨ ¬R))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(((

P

∧

Q

)→ (P ∨ ¬R))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(((

P

∧ Q)→ (P ∨ ¬R))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(((P ∧ Q)→ (P ∨ ¬R))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(((P ∧ Q)→ (P ∨ ¬R))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬

∀x (Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(((P ∧ Q)→ (P ∨ ¬R))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x

(Px → ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(((P ∧ Q)→ (P ∨ ¬R))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (

Px

→

¬∃y Rxy

)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(((P ∧ Q)→ (P ∨ ¬R))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (

Px

→ ¬

∃y Rxy

)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(((P ∧ Q)→ (P ∨ ¬R))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (

Px

→ ¬∃y

Rxy

)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(((P ∧ Q)→ (P ∨ ¬R))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (

Px

→ ¬∃y Rxy)

Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(((P ∧ Q)→ (P ∨ ¬R))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)

5.3 Validity, Logical Truths, and Contradictions

De�nition
Let Γ be a set of sentences of L and ϕ a sentence of L.�e
argument with all sentences in Γ as premisses and ϕ as
conclusion is valid if and only if there is no L-structure in which
all sentences in Γ are true and ϕ is false.

�is makes precise the informal characterisation of valid
arguments: in a valid argument the premisses can’t be true while
the conclusion is false – independently of what exists (arbitrary
domain), what proper names designate and what predicate
expressions mean.

�at the argument with all sentences in Γ as premisses and ϕ as
conclusion is valid, is abbreviated as Γ ⊧ ϕ.

�us, Γ ⊧ ϕ i� there is no L-structure such that ∣ϕ∣A = F and for
all sentences γ in Γ, ∣γ∣A = T.

5.3 Validity, Logical Truths, and Contradictions

De�nition
Let Γ be a set of sentences of L and ϕ a sentence of L.�e
argument with all sentences in Γ as premisses and ϕ as
conclusion is valid if and only if there is no L-structure in which
all sentences in Γ are true and ϕ is false.

�is makes precise the informal characterisation of valid
arguments: in a valid argument the premisses can’t be true while
the conclusion is false – independently of what exists (arbitrary
domain), what proper names designate and what predicate
expressions mean.

�at the argument with all sentences in Γ as premisses and ϕ as
conclusion is valid, is abbreviated as Γ ⊧ ϕ.

�us, Γ ⊧ ϕ i� there is no L-structure such that ∣ϕ∣A = F and for
all sentences γ in Γ, ∣γ∣A = T.

5.3 Validity, Logical Truths, and Contradictions

De�nition
Let Γ be a set of sentences of L and ϕ a sentence of L.�e
argument with all sentences in Γ as premisses and ϕ as
conclusion is valid if and only if there is no L-structure in which
all sentences in Γ are true and ϕ is false.

�is makes precise the informal characterisation of valid
arguments: in a valid argument the premisses can’t be true while
the conclusion is false – independently of what exists (arbitrary
domain), what proper names designate and what predicate
expressions mean.

�at the argument with all sentences in Γ as premisses and ϕ as
conclusion is valid, is abbreviated as Γ ⊧ ϕ.

�us, Γ ⊧ ϕ i� there is no L-structure such that ∣ϕ∣A = F and for
all sentences γ in Γ, ∣γ∣A = T.

5.3 Validity, Logical Truths, and Contradictions

De�nition
Let Γ be a set of sentences of L and ϕ a sentence of L.�e
argument with all sentences in Γ as premisses and ϕ as
conclusion is valid if and only if there is no L-structure in which
all sentences in Γ are true and ϕ is false.

�is makes precise the informal characterisation of valid
arguments: in a valid argument the premisses can’t be true while
the conclusion is false – independently of what exists (arbitrary
domain), what proper names designate and what predicate
expressions mean.

�at the argument with all sentences in Γ as premisses and ϕ as
conclusion is valid, is abbreviated as Γ ⊧ ϕ.

�us, Γ ⊧ ϕ i� there is no L-structure such that ∣ϕ∣A = F and for
all sentences γ in Γ, ∣γ∣A = T.

5.4 Counterexamples

In general, it’s di�cult to prove that an argument in L is valid by
proving a claim about all L-structures as there is no method to
go through all L-structures.

�is is in contrast to L where one can systematically check out all
L-structures using truth tables.

In order to show that an argument in L is not valid, one can
specify an L-structure in which all premisses are true and the
conclusion is false. Such an L-structure is called a
counterexample to the argument.

5.4 Counterexamples

In general, it’s di�cult to prove that an argument in L is valid by
proving a claim about all L-structures as there is no method to
go through all L-structures.

�is is in contrast to L where one can systematically check out all
L-structures using truth tables.

In order to show that an argument in L is not valid, one can
specify an L-structure in which all premisses are true and the
conclusion is false. Such an L-structure is called a
counterexample to the argument.

5.4 Counterexamples

Example
∀x (Px → Qx) ⊭ ∀x (¬Px → ¬Qx)

�e symbol ⊭ is used to claim that the argument is not valid.

Let B be an L-structure with {Oxford} as its domain and

∣P∣A = ∅

∣Q∣A = {Oxford}

What B assigns to other constants and predicate letters doesn’t
matter.

Claim
B is a counterexample to the argument.

5.4 Counterexamples

Example
∀x (Px → Qx) ⊭ ∀x (¬Px → ¬Qx)

�e symbol ⊭ is used to claim that the argument is not valid.

Let B be an L-structure with {Oxford} as its domain and

∣P∣A = ∅

∣Q∣A = {Oxford}

What B assigns to other constants and predicate letters doesn’t
matter.

Claim
B is a counterexample to the argument.

5.4 Counterexamples

At �rst I show that the premiss is true in B. Let α be any variable
assignment over B.

∣x∣αB ∉ ∅
∣x∣αB ∉ ∣P

∣B

∣Px∣αB = F
∣Px → Qx∣αB = T

So ∣Px → Qx∣αB = T for all variable assignments α over B and
therefore

∣∀x (Px → Qx)∣B = T

So the premiss is true in B.

5.4 Counterexamples

At �rst I show that the premiss is true in B. Let α be any variable
assignment over B.

∣x∣αB ∉ ∅
∣x∣αB ∉ ∣P

∣B

∣Px∣αB = F
∣Px → Qx∣αB = T

So ∣Px → Qx∣αB = T for all variable assignments α over B

and
therefore

∣∀x (Px → Qx)∣B = T

So the premiss is true in B.

5.4 Counterexamples

At �rst I show that the premiss is true in B. Let α be any variable
assignment over B.

∣x∣αB ∉ ∅
∣x∣αB ∉ ∣P

∣B

∣Px∣αB = F
∣Px → Qx∣αB = T

So ∣Px → Qx∣αB = T for all variable assignments α over B and
therefore

∣∀x (Px → Qx)∣B = T

So the premiss is true in B.

5.4 Counterexamples

At �rst I show that the premiss is true in B. Let α be any variable
assignment over B.

∣x∣αB ∉ ∅
∣x∣αB ∉ ∣P

∣B

∣Px∣αB = F
∣Px → Qx∣αB = T

So ∣Px → Qx∣αB = T for all variable assignments α over B and
therefore

∣∀x (Px → Qx)∣B = T

So the premiss is true in B.

5.4 Counterexamples

I still need to show that ∀x (¬Px → ¬Qx) is false in B. Let β be
a variable assignment over B.�en ∣x∣βB = Oxford.

∣x∣βB ∉ ∅

∣x∣βB ∉ ∣P
∣B

∣Px∣βB = F

∣¬Px∣βB = T

and similarly: ∣x∣βB ∈ {Oxford}

∣x∣βB ∈ ∣Q
∣B

∣Qx∣βB = T

∣¬Qx∣βB = F

So I have ∣(¬Px → ¬Qx)∣βB = F and therefore

∣∀x (¬Px → ¬Qx)∣B = F

So the conclusion is false in B.

5.4 Counterexamples

I still need to show that ∀x (¬Px → ¬Qx) is false in B. Let β be
a variable assignment over B.�en ∣x∣βB = Oxford.

∣x∣βB ∉ ∅

∣x∣βB ∉ ∣P
∣B

∣Px∣βB = F

∣¬Px∣βB = T

and similarly: ∣x∣βB ∈ {Oxford}

∣x∣βB ∈ ∣Q
∣B

∣Qx∣βB = T

∣¬Qx∣βB = F

So I have ∣(¬Px → ¬Qx)∣βB = F and therefore

∣∀x (¬Px → ¬Qx)∣B = F

So the conclusion is false in B.

5.4 Counterexamples

I still need to show that ∀x (¬Px → ¬Qx) is false in B. Let β be
a variable assignment over B.�en ∣x∣βB = Oxford.

∣x∣βB ∉ ∅

∣x∣βB ∉ ∣P
∣B

∣Px∣βB = F

∣¬Px∣βB = T

and similarly: ∣x∣βB ∈ {Oxford}

∣x∣βB ∈ ∣Q
∣B

∣Qx∣βB = T

∣¬Qx∣βB = F

So I have ∣(¬Px → ¬Qx)∣βB = F and therefore

∣∀x (¬Px → ¬Qx)∣B = F

So the conclusion is false in B.

	Introduction
	Semantics in English
	Atomic Sentences
	Atomic Formulae
	Quantifiers
	5.3 Validity, Logical Truths, and Contradictions
	5.4 Counterexamples

