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Introduction

Argument Valid
(1) Zeno is a tortoise.
(2) All tortoises are toothless.
�erefore, (C) Zeno is toothless.

Formalisation
(1) Pa
(2) ∀x (Px → Qx)
(C) Qa

Dictionary: a: Zeno. P:. . . is a tortoise. Q: . . . is toothless

What is it for this L-argument to be valid?
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Introduction

Validity

Recall the de�nition of validity for L.

Let Γ be a set of sentences of L and ϕ a sentence of L.

De�nition
�e argument with all sentences in Γ as premisses and ϕ as
conclusion is valid i� there is no L-structure under which:
(i) all sentences in Γ are true; and
(ii) ϕ is false.

We use an exactly analogous de�nition for L, replacing ‘L’
everywhere above with ‘L’.
It remains to de�ne: L-structure, truth in an L-structure
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Introduction

Structures
Structures interpret non-logical expressions.

L-structures
Non-logical expressions in L: P,Q , R, . . ..
An L-structureA assigns each sentence letter a semantic
value (speci�cally, a truth-value: T or F).

L is a richer language.�is calls for richer structures.

L-structures
Non-logical expressions: P,Q, R, . . .

P,Q, R, . . .
⋮

a, b, c, . . .
An L-structureA assigns each predicate and constant a
semantic value (speci�cally, what?).
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Introduction

I could present all de�nitions on 4 slides. Most slides just help to
motivate these de�nitions.



Semantics in English

Semantics in English
Start with a semantics for simple English sentences.

‘Maggie Smith is an actor.’

�e sentence is true (i.e.: its semantic value is: T).
. . . because of the relationship between the semantic values of its
constituents.

expression semantic value
‘Maggie Smith ’ Maggie Smith
‘is an actor’ the property of being an actor

. . . because Maggie Smith has the property of being an actor.

. . . because ∣‘Maggie Smith ’∣ has ∣‘is an actor’∣. 40

Notation
When e is an expression, we write ∣e∣ for its semantic value.
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Semantics in English

Similarly:

‘Mary likes Maggie Smith’ is true i�
Mary stands in the relation of liking to Maggie Smith

In other words:

∣‘Mary likes Maggie Smith’∣ = T i�
∣‘Mary’∣ stands in ∣‘likes’∣ to ∣‘Maggie Smith’∣
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Semantics in English

Semantic values for English expressions

expression semantic value
designator object

unary predicate property (alias: unary relation)
binary predicate binary relation

Examples
∣‘Maggie Smith’∣ = Maggie Smith
∣‘is an actor’∣ = the property of being an actor
∣‘likes’∣ = the relation of liking

We’ll take this one step further, by saying more about properties
and relations.
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Properties

For the purposes here, we identify properties with sets.

Property (alias: unary relation)
A unary relation P is a set of zero or more objects.

Speci�cally, P is the set of objects that have the property.

Informally: d ∈ P indicates that d has property P.

Example
�e property of being an actor

= the set of actors
= {d : d is an actor}
= {Emma Stone, B. Cumberbatch, . . .}
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Semantics in English

Relations
Recall that we identify binary relations with sets of pairs.

Binary relation
A binary relation R is a set of zero or more pairs of objects.

R is the set of pairs ⟨d , e⟩ such that d stands in R to e.

Informally: ⟨d , e⟩ ∈ R indicates that d bears R to e.

Example
�e relation of liking = {⟨d , e⟩ : d likes e}

Similarly:

A ternary (3-ary) relation is a set of triples (3-tuples).
A quaternary (4-ary) relation is a set of quadruples (4-tuples).
etc.
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Putting this all together:

‘Maggie Smith is an actor’ is true
i� ∣‘Maggie Smith’∣ has ∣‘is an actor’∣
i� Maggie Smith ∈ the set of actors

Similarly:

‘Mary likes Maggie Smith’ is true
i� ∣‘Mary’∣ stands in ∣‘likes’∣ to ∣‘Maggie Smith’∣
i� ⟨Mary, M. Smith ⟩ ∈ {⟨d , e⟩ ∶ d likes e}
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Atomic Sentences

Semantics for atomic L-sentences

�e semantics for atomic L-sentences is similar.

An L-structure speci�es semantic values for L-expressions:

L-expression semantic value
constant: a object: ∣a∣

sentence letter: P truth-value: ∣P∣ (i.e. T or F)
unary predicate letter: P unary relation: ∣P∣ (i.e. a set)
binary predicate letter: P binary relation: ∣P∣ (a set of pairs)

∣Pb∣ = T i� ∣b∣ ∈ ∣P∣
∣Rab∣ = T i� ⟨∣a∣, ∣b∣⟩ ∈ ∣R∣

Notation: ∣e∣A is the semantic value of e in L-structureA.
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Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.

What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.
Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.



Atomic Formulae

Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.
What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.
Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.



Atomic Formulae

Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.
What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.

Pronouns, such as ‘it’, do not.
‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.
Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.



Atomic Formulae

Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.
What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.
Pronouns, such as ‘it’, do not.

‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.
Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.



Atomic Formulae

Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.
What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.
Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.



Atomic Formulae

Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.
What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.
Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.



Atomic Formulae

Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.
What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.

Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.



Atomic Formulae

Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.
What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.
Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.



Atomic Formulae

Semantics for atomic L-formulae

We have the semantics for L-sentences like Pa.
What about L-formulae like Px?

In English:

�e designator ‘Maggie Smith’ has a constant semantic value.
Pronouns, such as ‘it’, do not.
‘it’ refers to di�erent objects depending on the context.

Something similar happens in an L-structureA: 30

a, b, c, . . . are assigned a constant semantic value inA.
Variables: x , y, z, . . . are not.

What object each variable denotes is speci�ed with a variable
assignment.



Atomic Formulae

Variable assignments

Variable assignment
A variable assignment assigns an object to each variable.

One can think of a variable assignment as an in�nite list.

Example: the assignment α.
x y z x y z x

Mercury Venus Venus Neptune Mars Venus Mars ⋯

Notation
We write ∣x∣α for the object α assigns to x.
We use lower case Greek letters: α, β, γ for assignments.

e.g. ∣x∣α = Mercury; ∣y∣α =Venus; ∣x∣α = Mars.
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Once x has been assigned an object, the semantics for Px are
much like the semantics for Pa.

We write ∣e∣αA for the semantic value of expression e in the
structureA under the variable assignment α.

∣Px∣αA = T i� ∣x∣α ∈ ∣P∣A (NB: ∣x∣αA = ∣x∣α)
∣Rxy∣αA = T i� ⟨∣x∣α , ∣y∣α⟩ ∈ ∣R∣A

Note: semantic values of constants and predicates are una�ected by the
assignment (e.g. ∣P∣αA = ∣P∣A, ∣a∣αA = ∣a∣A).

∣Rab∣αA = T i� ⟨∣a∣A, ∣b∣A⟩ ∈ ∣R∣A
∣Rxb∣αA = T i� ⟨∣x∣α , ∣b∣A⟩ ∈ ∣R∣A

Similarly for other atomic formulae.
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Atomic Formulae

Worked example
Let L-structureA be such that:
∣a∣A = Venus
∣b∣A = Mars
∣P∣A = {Saturn, Mars}
∣R∣A = {⟨Venus, Mars⟩}

Let assignments α and β be such that:
x y z

α: Saturn Mars Jupiter
β: Venus Venus Venus

Compute the following:
∣x∣αA =

Saturn

∣x∣βA =

Venus

∣a∣αA =

Venus

∣Py∣αA =

T

∣Py∣βA =

F

∣Pb∣αA =

T

∣Rxy∣αA =

F

∣Rxy∣βA =

F

∣Rxb∣αA =

F
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∣R∣A = {⟨Venus, Mars⟩}

Let assignments α and β be such that:
x y z
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Quantifiers

Semantics for quanti�ers

Whether the following sentence is true depends on which things
there are:

Everything is material.

�us the truth of sentences depends on which objects there are
and this needs to be taken into account in determining truth
values.



Quantifiers

In English, the truth-value of a quanti�ed sentence depends on
how widely the quanti�ers range.

Everyone can hear the lecturer.

�e context supplies a ‘domain’ telling us who ‘everyone’ ranges
over. 20

Domain: the set of people in South Schools

Everyone can hear the lecturer. T

Domain: the set of everyone in the world

Everyone can hear the lecturer. F
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Quantifiers

An L-structureA speci�es a non-empty set DA as the domain.

An assignment overA assigns a member of DA to each variable.

Semantics for ∀/∃ (�rst approximation):
∣∀xPx∣A = T
i� every member of DA is in ∣P∣A
i� every assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� every assignment α overA is such that ∣Px∣αA = T

Similarly:

∣∃xPx∣A = T
i� some member of DA is in ∣P∣A
i� some assignment α of x to a member of DA is such that ∣x∣α ∈ ∣P∣A
i� some assignment α overA is such that ∣Px∣αA = T

�is is correct but the general case is more complex.
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Quantifiers

�e semantics of quanti�ers is complicated by the need to deal
with multiple quanti�ers in sentences such as ∀x∃yRxy.

Suppose we try to evaluate this as before inA with domain DA.

∣∀x∃yRxy∣A = T
i� every assignment α overA is such that ∣∃yRxy∣αA = T

To progress any further we need to be able evaluate ∃yRxy under
an assignment α of an object to x.
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How to determine ∣∃yRxy∣αA?

∣∃yRxy∣αA = T

i� some d in DA is such that ⟨∣x∣α , d⟩ ∈ ∣R∣A
i� some assignment β overA is such that ⟨∣x∣α , ∣y∣β⟩ ∈ ∣R∣A

We don’t have to keep track of multiple assignments:

Say that β di�ers from α in y at most if ∣v∣α = ∣v∣β for all variables v with
the possible exception of y.

∣∃yRxy∣αA = T

i� some assignment β overA which di�ers from α in y at most
is such that ⟨∣x∣α , ∣y∣β⟩ ∈ ∣R∣A
i� some assignment β overA which di�ers from α in y at most is such that
∣Rxy∣βA = T
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L-structures

Here’s the full speci�cation of an L-structure.

An L-structureA supplies two things
(1) a domain: a non-empty set DA
(2) a semantic value for each predicate and constant.

L-expression semantic value inA
constant: a object: ∣a∣A in DA

sentence letter: P truth-value: ∣P∣A ( = T or F)
unary predicate letter: P unary relation: ∣P∣A (i.e. a set)
binary predicate letter: P binary relation: ∣P∣A (a set of pairs)
ternary predicate letter: P ternary relation: ∣P∣A (a set of triples)

etc.
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Summary of semantics of L

LetA be an L-structure and α an assignment overA.

Atomic formulae
Let Φn be a n-ary predicate letter (n > ) and let t, t, . . . be variables or
constants.

∣Φn
∣
α
A is the n-ary relation assigned to Φ

n byA.
∣t∣αA is the object t denotes inA if t is a constant.
∣t∣αA is the object assigned to t by α if t is a variable.

(i) ∣Φt∣αA = T if and only if ∣t∣αA ∈ ∣Φ∣A
∣Φtt∣αA = T if and only if ⟨∣t∣αA, ∣t∣

α
A⟩ ∈ ∣Φ


∣A

∣Φttt∣αA = T if and only if ⟨∣t∣αA, ∣t∣
α
A, ∣t∣

α
A⟩ ∈ ∣Φ


∣A

etc.
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Quantifiers

�ese are the semantic clauses for ∀v and ∃v.

Quanti�ers
(vii) ∣∀v ϕ∣αA = T if and only if ∣ϕ∣βA = T for all variable

assignments β overA di�ering from α in v at most.
(viii) ∣∃v ϕ∣αA = T if and only if ∣ϕ∣βA = T for at least one variable

assignment β overA di�ering from α in v at most.

�ese clauses determine the truth value of any formula in a
structureA under some variable assignment α overA
inductively.

However, we lack a simple decision procedure (in contrast to L
and the truth table method).
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Quantifiers

Truth
We haven’t yet said what it is for a sentence to be true in an
L-structureA.

We’ve said what it is for a formula to be true in an L-structureA
under an assignment overA.

(We’ve de�ned ∣ϕ∣αA; we want now to de�ne ∣ϕ∣A.)

Fact about sentences
�e truth-value of a sentence does not depend on the assignment.
For α and β overA: ∣ϕ∣αA = ∣ϕ∣βA (when ϕ is a sentence).

A sentence ϕ is true in an L-structureA (in symbols: ∣ϕ∣A = T)
i� ∣ϕ∣αA = T for all variable assignments α overA.

equivalently: ∣ϕ∣αA = T for some variable assignment α overA.

Now you know what truth is.
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Quantifiers

Why do we need variable assignments? Why can’t we just de�ne
truth �rst for atomic sentences and then for longer and longer
sentences as in L?

Sentences of L are built up from other sentences:

¬(((P ∧ Q)→ (P ∨ ¬R))↔ ¬((P ∨ R) ∨ R))

Sentences of L are built up from sentences and/or formulae
(possibly with free occurrences of variables):

¬∀x (Px → ¬∃y Rxy)
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5.3 Validity, Logical Truths, and Contradictions

De�nition
Let Γ be a set of sentences of L and ϕ a sentence of L.�e
argument with all sentences in Γ as premisses and ϕ as
conclusion is valid if and only if there is no L-structure in which
all sentences in Γ are true and ϕ is false.

�is makes precise the informal characterisation of valid
arguments: in a valid argument the premisses can’t be true while
the conclusion is false – independently of what exists (arbitrary
domain), what proper names designate and what predicate
expressions mean.

�at the argument with all sentences in Γ as premisses and ϕ as
conclusion is valid, is abbreviated as Γ ⊧ ϕ.

�us, Γ ⊧ ϕ i� there is no L-structure such that ∣ϕ∣A = F and for
all sentences γ in Γ, ∣γ∣A = T.
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go through all L-structures.

�is is in contrast to L where one can systematically check out all
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In order to show that an argument in L is not valid, one can
specify an L-structure in which all premisses are true and the
conclusion is false. Such an L-structure is called a
counterexample to the argument.
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