$\neg P \lor Q, P \lor \neg Q \vdash P \Longleftrightarrow Q$

I try to prove that $\neg P \lor Q, P \lor \neg Q \vdash P \leftrightarrow Q$.

 $\neg P \lor Q, P \lor \neg Q \vdash P \longleftrightarrow Q$

The first premiss is $\neg P \lor Q$. I try to apply \lor Elim.

 $P \lor Q, P \lor \neg Q \vdash P \leftrightarrow Q$

So I assume $\neg P$ and Q.

$$\neg P$$

 $\neg P \vee Q$

Q

I want to prove *Q* from *P*. Combining this with a proof of *P* from *Q* will allow me to prove the conclusion. To derive *Q* from *P* I assume *P*.

$$\neg P$$
 P $\neg P \lor Q$

 $\neg P \lor Q, P \lor \neg Q \vdash P \leftrightarrow Q$

I apply \neg Elim to $\neg Q$, which has not been assumed. This gives Q.

$$\neg P \lor Q$$
 Q Q

 $\neg P \lor Q, P \lor \neg Q \vdash P \Longleftrightarrow Q$

Now I can apply \vee Elim and discharge the assumptions $\neg P$ and Q.

$$\frac{\neg P \lor Q \qquad \frac{\left[\neg P\right] \qquad P}{Q} \qquad \left[Q\right]}{Q}$$

To prove *P* from *Q* I proceed in an analogous way.

 $\neg P \lor Q, P \lor \neg Q \vdash P \longleftrightarrow Q$

Now I can apply \leftrightarrow Intro and discharge P in the proof on the left and Q in the proof on the right.

	$[\neg P]$ $[P]$				$[\neg Q]$	[Q]
$\neg P \lor Q$	Q	[Q]	$P \vee \neg Q$	[P]	\overline{P}	
	Q			P		_
	$P \leftrightarrow O$					