It is to be proved that $P \rightarrow Q \vdash \neg P \lor Q$.

One cannot prove one of the disjuncts, that is, $\neg P$ or Q from the assumption $P \rightarrow Q$. Thus proving first $\neg P$ or Q and then applying \lor Intro1 or \lor Intro2 will hardly work.

In order to prove a disjunction it's often better to assume the negation of the disjunction, in the present case $\neg(\neg P \lor Q)$, and to derive a contradiction, so that one can apply \neg Elim and conclude $\neg P \lor Q$. This is the strategy in the following proof.

 $P \rightarrow Q \vdash \neg P \lor Q$

I assume P and combine it with the premiss $P \rightarrow Q$

$$P \qquad P \to Q$$

 $P \to Q \vdash \neg P \lor Q$

By \rightarrow Elim I conclude Q.

$$\frac{P \qquad P \to Q}{Q}$$

 $P \to Q \vdash \neg P \lor Q$

Applying \vee Intro2 yields $\neg P \vee Q$.

$$\frac{P \qquad P \to Q}{\neg P \lor Q}$$

I assume the negation of the conclusion...

$$\frac{P \qquad P \to Q}{Q \qquad \qquad \neg (\neg P \lor Q)}$$

to get $\neg P$ by \neg Intro. The assumption P is discharged accordingly.

$$\frac{Q}{\neg P \lor Q} \qquad \neg(\neg P \lor Q) \\
\neg P \qquad \neg P$$

 $P \to Q \vdash \neg P \lor Q$

I apply ∨Intro1...

$$\frac{P \quad P \to Q}{Q \quad \neg P \lor Q} \quad \neg (\neg P \lor Q) \quad \neg P \lor Q$$

$$\frac{\neg P \quad \neg P \lor Q}{\neg P \lor Q}$$

and assume once more the negation of the conclusion.

$$\frac{P \to Q}{Q \over \neg P \lor Q} \qquad \neg (\neg P \lor Q) \\
\frac{\neg P}{\neg P \lor Q} \qquad \neg (\neg P \lor Q)$$

I derive the conclusion by \neg Elim. $\neg(\neg P \lor Q)$ has been assumed twice. Both occurrences can be discharged.