I’m trying to show that $\vdash P \land Q \rightarrow P \lor Q$.

Just as a reminder: $P \land Q \rightarrow P \lor Q$ is short for $((P \land Q) \rightarrow (P \lor Q))$ according to the Bracketing Conventions.
\(P \land Q \) Since the sentence to be proved is of the form \(\phi \rightarrow \psi \), I may hope to get it by \(\rightarrow \)Intro. Thus I assume \(P \land Q \) and try to obtain \(P \lor Q \) from it.
\[\frac{P \land Q}{P} \quad \text{An application of } \land\text{Elim1 gives us } P. \]
An application of \lorIntro1 gives me $P \lor Q$.

$$
\frac{P \land Q}{P} \\
\frac{P}{P \lor Q}
$$
\[\begin{array}{c}
\vdash P \land Q \rightarrow P \lor Q \\

\frac{[P \land Q]}{P} \\
\frac{P \lor Q}{P \land Q \rightarrow P \lor Q}
\end{array} \]

Finally I get \(P \land Q \rightarrow P \lor Q \) by \(\rightarrow \text{Intro} \). The assumption \(P \land Q \) is discharged according to \(\rightarrow \text{Intro} \).