
Pa , Pb ⊢ ∀x(x = a ∨ x = b → Px)

I will give a proof for the following claim:

Pa, Pb ⊢ ∀x(x=a ∨ x=b → Px)

I’ll �rst show how to arrive at the proof. �en I’ll go through the
proof step-by-step according to the rules.
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Assuming the premisses is usually
a good idea.
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I need to prove the conclusion
∀x(x=a ∨ x=b → Px) from these
premisses.
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I hope to obtain the conclusion by
an application of ∀Intro.
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c=a ∨ c=b → Pc will be arrived at
by→Intro. So I assume c=a ∨ c=b
and try to get Pc from it and from
the other two assumptions.
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In order to derive something from
c=a∨c=b, I use∨Elim. So I assume
c=a and c=b.
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Obtaining Pc by =Elim is now easy.
Since Pc can be obtained in both
cases, ∨Elim can be applied.
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. . . and yes the square brackets are
still missing: c = a ∨ c = b is dis-
charged according to →Intro and
c = a and c = b are discharged ac-
cording to ∨Elim.
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To make sure that everything is correct, I go through the proof in
the o�cal order.
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Pa and Pb, c = a and c = b are as-
sumed.



Pa , Pb ⊢ ∀x(x = a ∨ x = b → Px)

[

c=a ∨ c=b

]

Pa

[

c=a

]

Pc
Pb

[

c=b

]

Pc

Pc
c=a ∨ c=b → Pc

∀x(x=a ∨ x=b → Px)

=Elim is applied in both cases to get
Pc.
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c=a ∨ c=b is assumed.
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∨Elim can be applied and c=a and
c = b are discharged in accordance
with ∨Elim.
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Now→Intro is used to discharge c=
a∨c=b and to get c=a∨c=b → Pc.
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�e last step is an application of
∀Intro. All assumptions containing
c have already been discharged and
the conclusion ∀x(x = a ∨ x = b →
Px) also does not contain c; so the
condition on constants is satis�ed.


