
INTRODUCTION TO LOGIC

Lecture 8
Identity and Definite Descriptions

Dr. James Studd

The analysis of the beginning would thus yield
the notion of the unity of being and

not-being—or, in a more reflected form, the unity
of differentiatedness and non-differentiatedness, or

the identity of identity and non-identity.
Hegel

The Science of Logic

Outline
(1) The language of predicate logic with identity: L=

Syntax
Semantics
Proof theory

(2) Formalisation in L=

Numerical quantifiers
Definite descriptions

8.1 Qualitative and Numerical Identity

The logicians’ sense of ‘identical’
In English, we use the words ‘identity’/‘identical’ in a
number of different ways.

Wider uses of ‘identity’/‘identical’
(1) Mancunians have a strong sense of cultural identity.
(2) Dr. Jekyll has multiple identities.
(3) Jedward are almost completely identical.

The sense of ‘identity’ used in (3) is sometimes called
‘qualitative identity’.

(3) says that John and Edward are almost exactly
similar in every respect.

None of these uses of ‘identical’ is the logicians’ use.

8.1 Qualitative and Numerical Identity

The logicians’ sense of ‘identical’
In English, we use the words ‘identity’/‘identical’ in a
number of different ways.

Wider uses of ‘identity’/‘identical’
(1) Mancunians have a strong sense of cultural identity.

(2) Dr. Jekyll has multiple identities.
(3) Jedward are almost completely identical.

The sense of ‘identity’ used in (3) is sometimes called
‘qualitative identity’.

(3) says that John and Edward are almost exactly
similar in every respect.

None of these uses of ‘identical’ is the logicians’ use.

8.1 Qualitative and Numerical Identity

The logicians’ sense of ‘identical’
In English, we use the words ‘identity’/‘identical’ in a
number of different ways.

Wider uses of ‘identity’/‘identical’
(1) Mancunians have a strong sense of cultural identity.
(2) Dr. Jekyll has multiple identities.

(3) Jedward are almost completely identical.

The sense of ‘identity’ used in (3) is sometimes called
‘qualitative identity’.

(3) says that John and Edward are almost exactly
similar in every respect.

None of these uses of ‘identical’ is the logicians’ use.

8.1 Qualitative and Numerical Identity

The logicians’ sense of ‘identical’
In English, we use the words ‘identity’/‘identical’ in a
number of different ways.

Wider uses of ‘identity’/‘identical’
(1) Mancunians have a strong sense of cultural identity.
(2) Dr. Jekyll has multiple identities.
(3) Jedward are almost completely identical.

The sense of ‘identity’ used in (3) is sometimes called
‘qualitative identity’.

(3) says that John and Edward are almost exactly
similar in every respect.

None of these uses of ‘identical’ is the logicians’ use.

8.1 Qualitative and Numerical Identity

The logicians’ sense of ‘identical’
In English, we use the words ‘identity’/‘identical’ in a
number of different ways.

Wider uses of ‘identity’/‘identical’
(1) Mancunians have a strong sense of cultural identity.
(2) Dr. Jekyll has multiple identities.
(3) Jedward are almost completely identical.

The sense of ‘identity’ used in (3) is sometimes called
‘qualitative identity’.

(3) says that John and Edward are almost exactly
similar in every respect.

None of these uses of ‘identical’ is the logicians’ use.

8.1 Qualitative and Numerical Identity

The logicians’ sense of ‘identical’
In English, we use the words ‘identity’/‘identical’ in a
number of different ways.

Wider uses of ‘identity’/‘identical’
(1) Mancunians have a strong sense of cultural identity.
(2) Dr. Jekyll has multiple identities.
(3) Jedward are almost completely identical.

The sense of ‘identity’ used in (3) is sometimes called
‘qualitative identity’.

(3) says that John and Edward are almost exactly
similar in every respect.

None of these uses of ‘identical’ is the logicians’ use.

8.1 Qualitative and Numerical Identity

The logicians’ sense of ‘identical’
In English, we use the words ‘identity’/‘identical’ in a
number of different ways.

Wider uses of ‘identity’/‘identical’
(1) Mancunians have a strong sense of cultural identity.
(2) Dr. Jekyll has multiple identities.
(3) Jedward are almost completely identical.

The sense of ‘identity’ used in (3) is sometimes called
‘qualitative identity’.

(3) says that John and Edward are almost exactly
similar in every respect.

None of these uses of ‘identical’ is the logicians’ use.

8.1 Qualitative and Numerical Identity

In logic, we always use ‘identical’ in the following strict sense

A is identical to B iff A is the very same thing as B
i.e. A and B are one and the same thing.

This is sometimes called ‘numerical identity’

(Unless otherwise stated ‘identity’/‘identical’ henceforth
mean numerical identity/numerically identical.)

Examples
George Orwell is identical to Eric Arthur Blair
Dr. Jekyll is identical to Mr. Hyde
John is not identical to Edward

8.1 Qualitative and Numerical Identity

In logic, we always use ‘identical’ in the following strict sense

A is identical to B iff A is the very same thing as B
i.e. A and B are one and the same thing.

This is sometimes called ‘numerical identity’

(Unless otherwise stated ‘identity’/‘identical’ henceforth
mean numerical identity/numerically identical.)

Examples
George Orwell is identical to Eric Arthur Blair
Dr. Jekyll is identical to Mr. Hyde
John is not identical to Edward

8.1 Qualitative and Numerical Identity

In logic, we always use ‘identical’ in the following strict sense

A is identical to B iff A is the very same thing as B
i.e. A and B are one and the same thing.

This is sometimes called ‘numerical identity’

(Unless otherwise stated ‘identity’/‘identical’ henceforth
mean numerical identity/numerically identical.)

Examples
George Orwell is identical to Eric Arthur Blair
Dr. Jekyll is identical to Mr. Hyde
John is not identical to Edward

8.1 Qualitative and Numerical Identity

In logic, we always use ‘identical’ in the following strict sense

A is identical to B iff A is the very same thing as B
i.e. A and B are one and the same thing.

This is sometimes called ‘numerical identity’

(Unless otherwise stated ‘identity’/‘identical’ henceforth
mean numerical identity/numerically identical.)

Examples
George Orwell is identical to Eric Arthur Blair

Dr. Jekyll is identical to Mr. Hyde
John is not identical to Edward

8.1 Qualitative and Numerical Identity

In logic, we always use ‘identical’ in the following strict sense

A is identical to B iff A is the very same thing as B
i.e. A and B are one and the same thing.

This is sometimes called ‘numerical identity’

(Unless otherwise stated ‘identity’/‘identical’ henceforth
mean numerical identity/numerically identical.)

Examples
George Orwell is identical to Eric Arthur Blair
Dr. Jekyll is identical to Mr. Hyde

John is not identical to Edward

8.1 Qualitative and Numerical Identity

In logic, we always use ‘identical’ in the following strict sense

A is identical to B iff A is the very same thing as B
i.e. A and B are one and the same thing.

This is sometimes called ‘numerical identity’

(Unless otherwise stated ‘identity’/‘identical’ henceforth
mean numerical identity/numerically identical.)

Examples
George Orwell is identical to Eric Arthur Blair
Dr. Jekyll is identical to Mr. Hyde
John is not identical to Edward

8.1 Qualitative and Numerical Identity

A third formal language
The new language makes a single addition to L2.

The language L=

The language L= of predicate logic with identity adds a single
binary predicate letter to the language of predicate logic L2.

L= adds the identity predicate = to L2

= differs from the other predicate letters in several way.

P , R2, etc., are non-logical expressions.
Different L2-structures interpret them differently.

= is treated as a logical expression.
It always has the same interpretation in any structure.

Minor difference: we write a = b (rather than =ab).

8.1 Qualitative and Numerical Identity

A third formal language
The new language makes a single addition to L2.

The language L=

The language L= of predicate logic with identity adds a single
binary predicate letter to the language of predicate logic L2.

L= adds the identity predicate = to L2

= differs from the other predicate letters in several way.

P , R2, etc., are non-logical expressions.
Different L2-structures interpret them differently.

= is treated as a logical expression.
It always has the same interpretation in any structure.

Minor difference: we write a = b (rather than =ab).

8.1 Qualitative and Numerical Identity

A third formal language
The new language makes a single addition to L2.

The language L=

The language L= of predicate logic with identity adds a single
binary predicate letter to the language of predicate logic L2.

L= adds the identity predicate = to L2

= differs from the other predicate letters in several way.

P , R2, etc., are non-logical expressions.
Different L2-structures interpret them differently.

= is treated as a logical expression.
It always has the same interpretation in any structure.

Minor difference: we write a = b (rather than =ab).

8.1 Qualitative and Numerical Identity

A third formal language
The new language makes a single addition to L2.

The language L=

The language L= of predicate logic with identity adds a single
binary predicate letter to the language of predicate logic L2.

L= adds the identity predicate = to L2

= differs from the other predicate letters in several way.

P , R2, etc., are non-logical expressions.
Different L2-structures interpret them differently.

= is treated as a logical expression.
It always has the same interpretation in any structure.

Minor difference: we write a = b (rather than =ab).

8.1 Qualitative and Numerical Identity

A third formal language
The new language makes a single addition to L2.

The language L=

The language L= of predicate logic with identity adds a single
binary predicate letter to the language of predicate logic L2.

L= adds the identity predicate = to L2

= differs from the other predicate letters in several way.

P , R2, etc., are non-logical expressions.
Different L2-structures interpret them differently.

= is treated as a logical expression.
It always has the same interpretation in any structure.

Minor difference: we write a = b (rather than =ab).

8.1 Qualitative and Numerical Identity

A third formal language
The new language makes a single addition to L2.

The language L=

The language L= of predicate logic with identity adds a single
binary predicate letter to the language of predicate logic L2.

L= adds the identity predicate = to L2

= differs from the other predicate letters in several way.

P , R2, etc., are non-logical expressions.
Different L2-structures interpret them differently.

= is treated as a logical expression.
It always has the same interpretation in any structure.

Minor difference: we write a = b (rather than =ab).

8.2 The Syntax of L=

Syntax
We make a slight change to the definition of atomic formula.

Definition (atomic formulae of L=)
All atomic formulae of L2 are atomic formulae of L=.
Furthermore, if s and t are variables or constants, then s= t
is an atomic formula of L=.

The definition of formula and sentence is otherwise just like
the definition for L2.

Examples
Atomic L=-formulae: c=a, x=y3, x=a, R2ax.
Complex L=-formulae: ¬x=y, ∀x(Rxy2 → y2 =x).

8.2 The Syntax of L=

Syntax
We make a slight change to the definition of atomic formula.

Definition (atomic formulae of L=)
All atomic formulae of L2 are atomic formulae of L=.
Furthermore, if s and t are variables or constants, then s= t
is an atomic formula of L=.

The definition of formula and sentence is otherwise just like
the definition for L2.

Examples
Atomic L=-formulae:

c=a, x=y3, x=a, R2ax.
Complex L=-formulae: ¬x=y, ∀x(Rxy2 → y2 =x).

8.2 The Syntax of L=

Syntax
We make a slight change to the definition of atomic formula.

Definition (atomic formulae of L=)
All atomic formulae of L2 are atomic formulae of L=.
Furthermore, if s and t are variables or constants, then s= t
is an atomic formula of L=.

The definition of formula and sentence is otherwise just like
the definition for L2.

Examples
Atomic L=-formulae: c=a,

x=y3, x=a, R2ax.
Complex L=-formulae: ¬x=y, ∀x(Rxy2 → y2 =x).

8.2 The Syntax of L=

Syntax
We make a slight change to the definition of atomic formula.

Definition (atomic formulae of L=)
All atomic formulae of L2 are atomic formulae of L=.
Furthermore, if s and t are variables or constants, then s= t
is an atomic formula of L=.

The definition of formula and sentence is otherwise just like
the definition for L2.

Examples
Atomic L=-formulae: c=a, x=y3,

x=a, R2ax.
Complex L=-formulae: ¬x=y, ∀x(Rxy2 → y2 =x).

8.2 The Syntax of L=

Syntax
We make a slight change to the definition of atomic formula.

Definition (atomic formulae of L=)
All atomic formulae of L2 are atomic formulae of L=.
Furthermore, if s and t are variables or constants, then s= t
is an atomic formula of L=.

The definition of formula and sentence is otherwise just like
the definition for L2.

Examples
Atomic L=-formulae: c=a, x=y3, x=a,

R2ax.
Complex L=-formulae: ¬x=y, ∀x(Rxy2 → y2 =x).

8.2 The Syntax of L=

Syntax
We make a slight change to the definition of atomic formula.

Definition (atomic formulae of L=)
All atomic formulae of L2 are atomic formulae of L=.
Furthermore, if s and t are variables or constants, then s= t
is an atomic formula of L=.

The definition of formula and sentence is otherwise just like
the definition for L2.

Examples
Atomic L=-formulae: c=a, x=y3, x=a, R2ax.

Complex L=-formulae: ¬x=y, ∀x(Rxy2 → y2 =x).

8.2 The Syntax of L=

Syntax
We make a slight change to the definition of atomic formula.

Definition (atomic formulae of L=)
All atomic formulae of L2 are atomic formulae of L=.
Furthermore, if s and t are variables or constants, then s= t
is an atomic formula of L=.

The definition of formula and sentence is otherwise just like
the definition for L2.

Examples
Atomic L=-formulae: c=a, x=y3, x=a, R2ax.
Complex L=-formulae:

¬x=y, ∀x(Rxy2 → y2 =x).

8.2 The Syntax of L=

Syntax
We make a slight change to the definition of atomic formula.

Definition (atomic formulae of L=)
All atomic formulae of L2 are atomic formulae of L=.
Furthermore, if s and t are variables or constants, then s= t
is an atomic formula of L=.

The definition of formula and sentence is otherwise just like
the definition for L2.

Examples
Atomic L=-formulae: c=a, x=y3, x=a, R2ax.
Complex L=-formulae: ¬x=y,

∀x(Rxy2 → y2 =x).

8.2 The Syntax of L=

Syntax
We make a slight change to the definition of atomic formula.

Definition (atomic formulae of L=)
All atomic formulae of L2 are atomic formulae of L=.
Furthermore, if s and t are variables or constants, then s= t
is an atomic formula of L=.

The definition of formula and sentence is otherwise just like
the definition for L2.

Examples
Atomic L=-formulae: c=a, x=y3, x=a, R2ax.
Complex L=-formulae: ¬x=y, ∀x(Rxy2 → y2 =x).

8.3 Semantics

Semantics

The definition of structure is just the same as before.

Definition: L=-structure
An L=-structure is simply an L2-structure.

Why no change?
Structures interpret non-logical expressions like P and a.
Structures do not interpret logical expressions like ¬ and ∀x.
The fixed interpretation of logical expressions is specified in
the definition of satisfaction.
e.g. |¬φ|αA = T iff |φ|αA = F
Similarly = is treated as a logical expression, which is not
assigned a semantic value by the structure.
The fixed interpretation of = is specified in the definition of
satisfaction.

8.3 Semantics

Semantics
The definition of structure is just the same as before.

Definition: L=-structure
An L=-structure is simply an L2-structure.

Why no change?
Structures interpret non-logical expressions like P and a.
Structures do not interpret logical expressions like ¬ and ∀x.
The fixed interpretation of logical expressions is specified in
the definition of satisfaction.
e.g. |¬φ|αA = T iff |φ|αA = F
Similarly = is treated as a logical expression, which is not
assigned a semantic value by the structure.
The fixed interpretation of = is specified in the definition of
satisfaction.

8.3 Semantics

Semantics
The definition of structure is just the same as before.

Definition: L=-structure
An L=-structure is simply an L2-structure.

Why no change?

Structures interpret non-logical expressions like P and a.
Structures do not interpret logical expressions like ¬ and ∀x.
The fixed interpretation of logical expressions is specified in
the definition of satisfaction.
e.g. |¬φ|αA = T iff |φ|αA = F
Similarly = is treated as a logical expression, which is not
assigned a semantic value by the structure.
The fixed interpretation of = is specified in the definition of
satisfaction.

8.3 Semantics

Semantics
The definition of structure is just the same as before.

Definition: L=-structure
An L=-structure is simply an L2-structure.

Why no change?
Structures interpret non-logical expressions like P and a.

Structures do not interpret logical expressions like ¬ and ∀x.
The fixed interpretation of logical expressions is specified in
the definition of satisfaction.
e.g. |¬φ|αA = T iff |φ|αA = F
Similarly = is treated as a logical expression, which is not
assigned a semantic value by the structure.
The fixed interpretation of = is specified in the definition of
satisfaction.

8.3 Semantics

Semantics
The definition of structure is just the same as before.

Definition: L=-structure
An L=-structure is simply an L2-structure.

Why no change?
Structures interpret non-logical expressions like P and a.
Structures do not interpret logical expressions like ¬ and ∀x.

The fixed interpretation of logical expressions is specified in
the definition of satisfaction.
e.g. |¬φ|αA = T iff |φ|αA = F
Similarly = is treated as a logical expression, which is not
assigned a semantic value by the structure.
The fixed interpretation of = is specified in the definition of
satisfaction.

8.3 Semantics

Semantics
The definition of structure is just the same as before.

Definition: L=-structure
An L=-structure is simply an L2-structure.

Why no change?
Structures interpret non-logical expressions like P and a.
Structures do not interpret logical expressions like ¬ and ∀x.
The fixed interpretation of logical expressions is specified in
the definition of satisfaction.

e.g. |¬φ|αA = T iff |φ|αA = F
Similarly = is treated as a logical expression, which is not
assigned a semantic value by the structure.
The fixed interpretation of = is specified in the definition of
satisfaction.

8.3 Semantics

Semantics
The definition of structure is just the same as before.

Definition: L=-structure
An L=-structure is simply an L2-structure.

Why no change?
Structures interpret non-logical expressions like P and a.
Structures do not interpret logical expressions like ¬ and ∀x.
The fixed interpretation of logical expressions is specified in
the definition of satisfaction.
e.g. |¬φ|αA = T iff |φ|αA = F

Similarly = is treated as a logical expression, which is not
assigned a semantic value by the structure.
The fixed interpretation of = is specified in the definition of
satisfaction.

8.3 Semantics

Semantics
The definition of structure is just the same as before.

Definition: L=-structure
An L=-structure is simply an L2-structure.

Why no change?
Structures interpret non-logical expressions like P and a.
Structures do not interpret logical expressions like ¬ and ∀x.
The fixed interpretation of logical expressions is specified in
the definition of satisfaction.
e.g. |¬φ|αA = T iff |φ|αA = F
Similarly = is treated as a logical expression, which is not
assigned a semantic value by the structure.

The fixed interpretation of = is specified in the definition of
satisfaction.

8.3 Semantics

Semantics
The definition of structure is just the same as before.

Definition: L=-structure
An L=-structure is simply an L2-structure.

Why no change?
Structures interpret non-logical expressions like P and a.
Structures do not interpret logical expressions like ¬ and ∀x.
The fixed interpretation of logical expressions is specified in
the definition of satisfaction.
e.g. |¬φ|αA = T iff |φ|αA = F
Similarly = is treated as a logical expression, which is not
assigned a semantic value by the structure.
The fixed interpretation of = is specified in the definition of
satisfaction.

8.3 Semantics

Let A be an L=-structure (i.e. an L2-structure).
Truth in A is defined just as before with one addition:

Definition: satisfaction of identity statements
(ix) |s= t|αA = T if and only if |s|αA = |t|αA.

Note: = is used in both L= and the metalanguage.

The other definitions from Chapter 5 carry over directly to L=.
Valid
Logical truth
Contradiction
Logically equivalent
Semantically consistent

These are defined just as before replacing ‘L2’ with ‘L=’.

8.3 Semantics

Let A be an L=-structure (i.e. an L2-structure).
Truth in A is defined just as before with one addition:

Definition: satisfaction of identity statements
(ix) |s= t|αA = T if and only if |s|αA = |t|αA.

Note: = is used in both L= and the metalanguage.

The other definitions from Chapter 5 carry over directly to L=.
Valid
Logical truth
Contradiction
Logically equivalent
Semantically consistent

These are defined just as before replacing ‘L2’ with ‘L=’.

8.3 Semantics

Let A be an L=-structure (i.e. an L2-structure).
Truth in A is defined just as before with one addition:

Definition: satisfaction of identity statements
(ix) |s= t|αA = T if and only if |s|αA = |t|αA.

Note: = is used in both L= and the metalanguage.

The other definitions from Chapter 5 carry over directly to L=.
Valid
Logical truth
Contradiction
Logically equivalent
Semantically consistent

These are defined just as before replacing ‘L2’ with ‘L=’.

8.3 Semantics

Let A be an L=-structure (i.e. an L2-structure).
Truth in A is defined just as before with one addition:

Definition: satisfaction of identity statements
(ix) |s= t|αA = T if and only if |s|αA = |t|αA.

Note: = is used in both L= and the metalanguage.

The other definitions from Chapter 5 carry over directly to L=.
Valid
Logical truth
Contradiction
Logically equivalent
Semantically consistent

These are defined just as before replacing ‘L2’ with ‘L=’.

8.3 Semantics

Let A be an L=-structure (i.e. an L2-structure).
Truth in A is defined just as before with one addition:

Definition: satisfaction of identity statements
(ix) |s= t|αA = T if and only if |s|αA = |t|αA.

Note: = is used in both L= and the metalanguage.

The other definitions from Chapter 5 carry over directly to L=.
Valid
Logical truth
Contradiction
Logically equivalent
Semantically consistent

These are defined just as before replacing ‘L2’ with ‘L=’.

8.3 Semantics

Let A be an L=-structure (i.e. an L2-structure).
Truth in A is defined just as before with one addition:

Definition: satisfaction of identity statements
(ix) |s= t|αA = T if and only if |s|αA = |t|αA.

Note: = is used in both L= and the metalanguage.

The other definitions from Chapter 5 carry over directly to L=.
Valid
Logical truth
Contradiction
Logically equivalent
Semantically consistent

These are defined just as before replacing ‘L2’ with ‘L=’.

8.3 Semantics

Worked example
∀x ∀y x=y isn’t logically true.

Counterexample: let A be an L=-structure with domain {1, 2}.

Proof. Let α be an assignment over A.
Sufficient to prove (STP:) ∀x∀y x=y is false in A under α.

Now: |∀x∀y x = y|αA = T iff |∀y x = y|βA = T for every β
differing from α at most in x.

STP: |∀y x = y|βA = F for some assignment β differing from α
at most in x.

But: |∀y x = y|βA = T iff |x = y|γA = T for every γ differing
from β at most in y.

STP: |x = y|γA = F for some γ differing from β in at most y.
So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α)

Then |x|γ 6= |y|γ ; so |x = y|γA = F. QED 20

8.3 Semantics

Worked example
∀x ∀y x=y isn’t logically true.

Counterexample: let A be an L=-structure with domain {1, 2}.

Proof. Let α be an assignment over A.
Sufficient to prove (STP:) ∀x∀y x=y is false in A under α.

Now: |∀x∀y x = y|αA = T iff |∀y x = y|βA = T for every β
differing from α at most in x.

STP: |∀y x = y|βA = F for some assignment β differing from α
at most in x.

But: |∀y x = y|βA = T iff |x = y|γA = T for every γ differing
from β at most in y.

STP: |x = y|γA = F for some γ differing from β in at most y.
So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α)

Then |x|γ 6= |y|γ ; so |x = y|γA = F. QED 20

8.3 Semantics

Worked example
∀x ∀y x=y isn’t logically true.

Counterexample: let A be an L=-structure with domain {1, 2}.

Proof.

Let α be an assignment over A.
Sufficient to prove (STP:) ∀x∀y x=y is false in A under α.

Now: |∀x∀y x = y|αA = T iff |∀y x = y|βA = T for every β
differing from α at most in x.

STP: |∀y x = y|βA = F for some assignment β differing from α
at most in x.

But: |∀y x = y|βA = T iff |x = y|γA = T for every γ differing
from β at most in y.

STP: |x = y|γA = F for some γ differing from β in at most y.
So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α)

Then |x|γ 6= |y|γ ; so |x = y|γA = F. QED 20

8.3 Semantics

Worked example
∀x ∀y x=y isn’t logically true.

Counterexample: let A be an L=-structure with domain {1, 2}.

Proof. Let α be an assignment over A.

Sufficient to prove (STP:) ∀x∀y x=y is false in A under α.

Now: |∀x∀y x = y|αA = T iff |∀y x = y|βA = T for every β
differing from α at most in x.

STP: |∀y x = y|βA = F for some assignment β differing from α
at most in x.

But: |∀y x = y|βA = T iff |x = y|γA = T for every γ differing
from β at most in y.

STP: |x = y|γA = F for some γ differing from β in at most y.
So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α)

Then |x|γ 6= |y|γ ; so |x = y|γA = F. QED 20

8.3 Semantics

Worked example
∀x ∀y x=y isn’t logically true.

Counterexample: let A be an L=-structure with domain {1, 2}.

Proof. Let α be an assignment over A.
Sufficient to prove (STP:) ∀x ∀y x=y is false in A under α.

Now: |∀x∀y x = y|αA = T iff |∀y x = y|βA = T for every β
differing from α at most in x.

STP: |∀y x = y|βA = F for some assignment β differing from α
at most in x.

But: |∀y x = y|βA = T iff |x = y|γA = T for every γ differing
from β at most in y.

STP: |x = y|γA = F for some γ differing from β in at most y.
So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α)

Then |x|γ 6= |y|γ ; so |x = y|γA = F. QED 20

8.3 Semantics

Worked example
∀x ∀y x=y isn’t logically true.

Counterexample: let A be an L=-structure with domain {1, 2}.

Proof. Let α be an assignment over A.
Sufficient to prove (STP:) ∀x ∀y x=y is false in A under α.

Now: |∀x∀y x = y|αA = T iff |∀y x = y|βA = T for every β
differing from α at most in x.

STP: |∀y x = y|βA = F for some assignment β differing from α
at most in x.

But: |∀y x = y|βA = T iff |x = y|γA = T for every γ differing
from β at most in y.

STP: |x = y|γA = F for some γ differing from β in at most y.
So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α)

Then |x|γ 6= |y|γ ; so |x = y|γA = F. QED 20

8.3 Semantics

Worked example
∀x ∀y x=y isn’t logically true.

Counterexample: let A be an L=-structure with domain {1, 2}.

Proof. Let α be an assignment over A.
Sufficient to prove (STP:) ∀x ∀y x=y is false in A under α.

Now: |∀x∀y x = y|αA = F iff |∀y x = y|βA = F for some β
differing from α at most in x.

STP: |∀y x = y|βA = F for some assignment β differing from α
at most in x.

But: |∀y x = y|βA = T iff |x = y|γA = T for every γ differing
from β at most in y.

STP: |x = y|γA = F for some γ differing from β in at most y.
So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α)

Then |x|γ 6= |y|γ ; so |x = y|γA = F. QED 20

8.3 Semantics

Worked example
∀x ∀y x=y isn’t logically true.

Counterexample: let A be an L=-structure with domain {1, 2}.

Proof. Let α be an assignment over A.
Sufficient to prove (STP:) ∀x ∀y x=y is false in A under α.

Now: |∀x∀y x = y|αA = F iff |∀y x = y|βA = F for some β
differing from α at most in x.

STP: |∀y x = y|βA = F for some assignment β differing from α
at most in x.

But: |∀y x = y|βA = T iff |x = y|γA = T for every γ differing
from β at most in y.

STP: |x = y|γA = F for some γ differing from β in at most y.
So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α)

Then |x|γ 6= |y|γ ; so |x = y|γA = F. QED 20

8.3 Semantics

Worked example
∀x ∀y x=y isn’t logically true.

Counterexample: let A be an L=-structure with domain {1, 2}.

Proof. Let α be an assignment over A.
Sufficient to prove (STP:) ∀x ∀y x=y is false in A under α.

Now: |∀x∀y x = y|αA = F iff |∀y x = y|βA = F for some β
differing from α at most in x.

STP: |∀y x = y|βA = F for some assignment β differing from α
at most in x.

But: |∀y x = y|βA = T iff |x = y|γA = T for every γ differing
from β at most in y.

STP: |x = y|γA = F for some γ differing from β in at most y.
So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α)

Then |x|γ 6= |y|γ ; so |x = y|γA = F. QED 20

8.3 Semantics

Worked example
∀x ∀y x=y isn’t logically true.

Counterexample: let A be an L=-structure with domain {1, 2}.

Proof. Let α be an assignment over A.
Sufficient to prove (STP:) ∀x ∀y x=y is false in A under α.

Now: |∀x∀y x = y|αA = F iff |∀y x = y|βA = F for some β
differing from α at most in x.

STP: |∀y x = y|βA = F for some assignment β differing from α
at most in x.

But: |∀y x = y|βA = F iff |x = y|γA = F for some γ differing
from β at most in y.

STP: |x = y|γA = F for some γ differing from β in at most y.
So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α)

Then |x|γ 6= |y|γ ; so |x = y|γA = F. QED 20

8.3 Semantics

Worked example
∀x ∀y x=y isn’t logically true.

Counterexample: let A be an L=-structure with domain {1, 2}.

Proof. Let α be an assignment over A.
Sufficient to prove (STP:) ∀x ∀y x=y is false in A under α.

Now: |∀x∀y x = y|αA = F iff |∀y x = y|βA = F for some β
differing from α at most in x.

STP: |∀y x = y|βA = F for some assignment β differing from α
at most in x.

But: |∀y x = y|βA = F iff |x = y|γA = F for some γ differing
from β at most in y.

STP: |x = y|γA = F for some γ differing from β in at most y.

So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α)
Then |x|γ 6= |y|γ ; so |x = y|γA = F. QED 20

8.3 Semantics

Worked example
∀x ∀y x=y isn’t logically true.

Counterexample: let A be an L=-structure with domain {1, 2}.

Proof. Let α be an assignment over A.
Sufficient to prove (STP:) ∀x ∀y x=y is false in A under α.
Now: |∀x∀y x = y|αA = F iff |∀y x = y|βA = F for some β

differing from α at most in x.
STP: |∀y x = y|βA = F for some assignment β differing from α

at most in x.
But: |∀y x = y|βA = F iff |x = y|γA = F for some γ differing

from β at most in y.
STP: |x = y|γA = F for some γ differing from α in at most x

and y.

So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α)
Then |x|γ 6= |y|γ ; so |x = y|γA = F. QED 20

8.3 Semantics

Worked example
∀x ∀y x=y isn’t logically true.

Counterexample: let A be an L=-structure with domain {1, 2}.

Proof. Let α be an assignment over A.
Sufficient to prove (STP:) ∀x ∀y x=y is false in A under α.
Now: |∀x∀y x = y|αA = F iff |∀y x = y|βA = F for some β

differing from α at most in x.
STP: |∀y x = y|βA = F for some assignment β differing from α

at most in x.
But: |∀y x = y|βA = F iff |x = y|γA = F for some γ differing

from β at most in y.
STP: |x = y|γA = F for some γ differing from α in at most x

and y.
So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α)

Then |x|γ 6= |y|γ ; so |x = y|γA = F. QED 20

8.3 Semantics

Worked example
∀x ∀y x=y isn’t logically true.

Counterexample: let A be an L=-structure with domain {1, 2}.

Proof. Let α be an assignment over A.
Sufficient to prove (STP:) ∀x ∀y x=y is false in A under α.
Now: |∀x∀y x = y|αA = F iff |∀y x = y|βA = F for some β

differing from α at most in x.
STP: |∀y x = y|βA = F for some assignment β differing from α

at most in x.
But: |∀y x = y|βA = F iff |x = y|γA = F for some γ differing

from β at most in y.
STP: |x = y|γA = F for some γ differing from α in at most x

and y.
So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α)

Then |x|γ 6= |y|γ ;

so |x = y|γA = F. QED 20

8.3 Semantics

Worked example
∀x ∀y x=y isn’t logically true.

Counterexample: let A be an L=-structure with domain {1, 2}.

Proof. Let α be an assignment over A.
Sufficient to prove (STP:) ∀x ∀y x=y is false in A under α.
Now: |∀x∀y x = y|αA = F iff |∀y x = y|βA = F for some β

differing from α at most in x.
STP: |∀y x = y|βA = F for some assignment β differing from α

at most in x.
But: |∀y x = y|βA = F iff |x = y|γA = F for some γ differing

from β at most in y.
STP: |x = y|γA = F for some γ differing from α in at most x

and y.
So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α)

Then |x|γ 6= |y|γ ; so |x = y|γA = F.

QED 20

8.3 Semantics

Worked example
∀x ∀y x=y isn’t logically true.

Counterexample: let A be an L=-structure with domain {1, 2}.

Proof. Let α be an assignment over A.
Sufficient to prove (STP:) ∀x ∀y x=y is false in A under α.
Now: |∀x∀y x = y|αA = F iff |∀y x = y|βA = F for some β

differing from α at most in x.
STP: |∀y x = y|βA = F for some assignment β differing from α

at most in x.
But: |∀y x = y|βA = F iff |x = y|γA = F for some γ differing

from β at most in y.
STP: |x = y|γA = F for some γ differing from α in at most x

and y.
So: Let γ assign x to 1 and y to 2 (otherwise agreeing with α)

Then |x|γ 6= |y|γ ; so |x = y|γA = F. QED 20

8.4 Proof Rules for Identity

Proof theory
Natural Deduction for L= has the same rules as Natural
Deduction for L2 with the addition of rules for =.

=Intro
Any assumption of the form t= t where t is a constant can
and must be discharged.

A proof with an application of =Intro looks like this:

[t= t]
...

Example: prove ` ∀z(z = z)

[

a = a

]

∀z(z = z)

8.4 Proof Rules for Identity

Proof theory
Natural Deduction for L= has the same rules as Natural
Deduction for L2 with the addition of rules for =.

=Intro
Any assumption of the form t= t where t is a constant can
and must be discharged.

A proof with an application of =Intro looks like this:

[t= t]
...

Example: prove ` ∀z(z = z)

[

a = a

]

∀z(z = z)

8.4 Proof Rules for Identity

Proof theory
Natural Deduction for L= has the same rules as Natural
Deduction for L2 with the addition of rules for =.

=Intro
Any assumption of the form t= t where t is a constant can
and must be discharged.

A proof with an application of =Intro looks like this:

[t= t]
...

Example: prove ` ∀z(z = z)

[

a = a

]

∀z(z = z)

8.4 Proof Rules for Identity

Proof theory
Natural Deduction for L= has the same rules as Natural
Deduction for L2 with the addition of rules for =.

=Intro
Any assumption of the form t= t where t is a constant can
and must be discharged.

A proof with an application of =Intro looks like this:

[t= t]
...

Example: prove ` ∀z(z = z)

[

a = a

]

∀z(z = z)

8.4 Proof Rules for Identity

Proof theory
Natural Deduction for L= has the same rules as Natural
Deduction for L2 with the addition of rules for =.

=Intro
Any assumption of the form t= t where t is a constant can
and must be discharged.

A proof with an application of =Intro looks like this:

[t= t]
...

Example: prove ` ∀z(z = z)

[

a = a

]

∀z(z = z)

8.4 Proof Rules for Identity

Proof theory
Natural Deduction for L= has the same rules as Natural
Deduction for L2 with the addition of rules for =.

=Intro
Any assumption of the form t= t where t is a constant can
and must be discharged.

A proof with an application of =Intro looks like this:

[t= t]
...

Example: prove ` ∀z(z = z)

[a = a]

∀z(z = z)

8.4 Proof Rules for Identity

Proof theory
Natural Deduction for L= has the same rules as Natural
Deduction for L2 with the addition of rules for =.

=Intro
Any assumption of the form t= t where t is a constant can
and must be discharged.

A proof with an application of =Intro looks like this:

[t= t]
...

Example: prove ` ∀z(z = z)

[a = a]

∀z(z = z)

8.4 Proof Rules for Identity

=Elim
If s and t are constants, the result of appending φ[t/v] to a
proof of φ[s/v] and a proof of s= t or t=s is a proof of
φ[t/v].

...
φ[s/v]

...
s= t

=Elim
φ[t/v]

...
φ[s/v]

...
t=s

=Elim
φ[t/v]

8.4 Proof Rules for Identity

Worked example: prove the following.
` ∀x ∀y (Rxy → (x=y → Ryx))

[

Rab

] [

a=b

]

Raa

[

a=b

]

Rba
a=b→ Rba

Rab→ (a=b→ Rba)

∀y (Ray → (a=y → Rya))

∀x ∀y (Rxy → (x=y → Ryx))

...
φ[s/v]

...
s= t

=Elim
φ[t/v]

...
φ[s/v]

...
t=s

=Elim
φ[t/v]

8.4 Proof Rules for Identity

Worked example: prove the following.
` ∀x ∀y (Rxy → (x=y → Ryx))

[

Rab

]

[

a=b

]

Raa

[

a=b

]

Rba
a=b→ Rba

Rab→ (a=b→ Rba)

∀y (Ray → (a=y → Rya))

∀x ∀y (Rxy → (x=y → Ryx))

...
φ[s/v]

...
s= t

=Elim
φ[t/v]

...
φ[s/v]

...
t=s

=Elim
φ[t/v]

8.4 Proof Rules for Identity

Worked example: prove the following.
` ∀x ∀y (Rxy → (x=y → Ryx))

[

Rab

] [

a=b

]

Raa

[

a=b

]

Rba
a=b→ Rba

Rab→ (a=b→ Rba)

∀y (Ray → (a=y → Rya))

∀x ∀y (Rxy → (x=y → Ryx))

...
φ[s/v]

...
s= t

=Elim
φ[t/v]

...
φ[s/v]

...
t=s

=Elim
φ[t/v]

8.4 Proof Rules for Identity

Worked example: prove the following.
` ∀x ∀y (Rxy → (x=y → Ryx))

[

Rab

] [

a=b

]

Raa

[

a=b

]

Rba
a=b→ Rba

Rab→ (a=b→ Rba)

∀y (Ray → (a=y → Rya))

∀x ∀y (Rxy → (x=y → Ryx))

...
φ[s/v]

...
s= t

=Elim
φ[t/v]

...
φ[s/v]

...
t=s

=Elim
φ[t/v]

8.4 Proof Rules for Identity

Worked example: prove the following.
` ∀x ∀y (Rxy → (x=y → Ryx))

[

Rab

] [

a=b

]

Raa

[

a=b

]

Rba
a=b→ Rba

Rab→ (a=b→ Rba)

∀y (Ray → (a=y → Rya))

∀x ∀y (Rxy → (x=y → Ryx))

...
φ[s/v]

...
s= t

=Elim
φ[t/v]

...
φ[s/v]

...
t=s

=Elim
φ[t/v]

8.4 Proof Rules for Identity

Worked example: prove the following.
` ∀x ∀y (Rxy → (x=y → Ryx))

[

Rab

] [

a=b

]

Raa

[

a=b

]

Rba

a=b→ Rba
Rab→ (a=b→ Rba)

∀y (Ray → (a=y → Rya))

∀x ∀y (Rxy → (x=y → Ryx))

...
φ[s/v]

...
s= t

=Elim
φ[t/v]

...
φ[s/v]

...
t=s

=Elim
φ[t/v]

8.4 Proof Rules for Identity

Worked example: prove the following.
` ∀x ∀y (Rxy → (x=y → Ryx))

[

Rab

] [

a=b

]

Raa

[

a=b

]

Rba
a=b→ Rba

Rab→ (a=b→ Rba)

∀y (Ray → (a=y → Rya))

∀x∀y (Rxy → (x=y → Ryx))

...
φ[s/v]

...
s= t

=Elim
φ[t/v]

...
φ[s/v]

...
t=s

=Elim
φ[t/v]

8.4 Proof Rules for Identity

Worked example: prove the following.
` ∀x ∀y (Rxy → (x=y → Ryx))

[

Rab

]

[a=b]

Raa

[

a=b

]

Rba
a=b→ Rba

Rab→ (a=b→ Rba)

∀y (Ray → (a=y → Rya))

∀x∀y (Rxy → (x=y → Ryx))

...
φ[s/v]

...
s= t

=Elim
φ[t/v]

...
φ[s/v]

...
t=s

=Elim
φ[t/v]

8.4 Proof Rules for Identity

Worked example: prove the following.
` ∀x ∀y (Rxy → (x=y → Ryx))

[

Rab

]

[a=b]

Raa [a=b]

Rba
a=b→ Rba

Rab→ (a=b→ Rba)

∀y (Ray → (a=y → Rya))

∀x∀y (Rxy → (x=y → Ryx))

...
φ[s/v]

...
s= t

=Elim
φ[t/v]

...
φ[s/v]

...
t=s

=Elim
φ[t/v]

8.4 Proof Rules for Identity

Worked example: prove the following.
` ∀x ∀y (Rxy → (x=y → Ryx))

[

Rab

]

[a=b]

Raa [a=b]

Rba
a=b→ Rba

Rab→ (a=b→ Rba)

∀y (Ray → (a=y → Rya))

∀x ∀y (Rxy → (x=y → Ryx))

...
φ[s/v]

...
s= t

=Elim
φ[t/v]

...
φ[s/v]

...
t=s

=Elim
φ[t/v]

8.4 Proof Rules for Identity

Worked example: prove the following.
` ∀x ∀y (Rxy → (x=y → Ryx))

[Rab] [a=b]

Raa [a=b]

Rba
a=b→ Rba

Rab→ (a=b→ Rba)

∀y (Ray → (a=y → Rya))

∀x ∀y (Rxy → (x=y → Ryx))

...
φ[s/v]

...
s= t

=Elim
φ[t/v]

...
φ[s/v]

...
t=s

=Elim
φ[t/v]

8.4 Proof Rules for Identity

Worked example: prove the following.
` ∀x ∀y (Rxy → (x=y → Ryx))

[Rab] [a=b]

Raa [a=b]

Rba
a=b→ Rba

Rab→ (a=b→ Rba)

∀y (Ray → (a=y → Rya))

∀x∀y (Rxy → (x=y → Ryx))

...
φ[s/v]

...
s= t

=Elim
φ[t/v]

...
φ[s/v]

...
t=s

=Elim
φ[t/v]

8.4 Proof Rules for Identity

Worked example: prove the following.
` ∀x ∀y (Rxy → (x=y → Ryx))

[Rab] [a=b]

Raa [a=b]

Rba
a=b→ Rba

Rab→ (a=b→ Rba)

∀y (Ray → (a=y → Rya))

∀x ∀y (Rxy → (x=y → Ryx))

...
φ[s/v]

...
s= t

=Elim
φ[t/v]

...
φ[s/v]

...
t=s

=Elim
φ[t/v]

8.4 Proof Rules for Identity

Adequacy
Soundness and Completeness still hold.

Let Γ be a set of L=-sentences and φ an L=-sentence.

Theorem (adequacy)
Γ ` φ if and only if Γ |= φ. 25

8.4 Proof Rules for Identity

Adequacy
Soundness and Completeness still hold.

Let Γ be a set of L=-sentences and φ an L=-sentence.

Theorem (adequacy)
Γ ` φ if and only if Γ |= φ. 25

8.4 Uses of identity

Formalisation with identity
Using = one can formalise ‘is [identical to]’ in English.

Formalise:
William ii is Wilhelm ii.

Formalisation: a = b.
Dictionary: a: William ii. b: Wilhelm ii.

Note: don’t confuse the ‘is’ of identity with the ‘is’ of predication.

Formalise:
Wilhelm ii is an emperor.

Formalisation: Ea.
Dictionary: a: Wilhelm. E: . . . is an emperor.

Here ‘is’ forms part of the predicate ‘is an emperor.’

8.4 Uses of identity

Formalisation with identity
Using = one can formalise ‘is [identical to]’ in English.

Formalise:
William ii is Wilhelm ii.

Formalisation: a = b.
Dictionary: a: William ii. b: Wilhelm ii.

Note: don’t confuse the ‘is’ of identity with the ‘is’ of predication.

Formalise:
Wilhelm ii is an emperor.

Formalisation: Ea.
Dictionary: a: Wilhelm. E: . . . is an emperor.

Here ‘is’ forms part of the predicate ‘is an emperor.’

8.4 Uses of identity

Formalisation with identity
Using = one can formalise ‘is [identical to]’ in English.

Formalise:
William ii is Wilhelm ii.

Formalisation: a = b.
Dictionary: a: William ii. b: Wilhelm ii.

Note: don’t confuse the ‘is’ of identity with the ‘is’ of predication.

Formalise:
Wilhelm ii is an emperor.

Formalisation: Ea.
Dictionary: a: Wilhelm. E: . . . is an emperor.

Here ‘is’ forms part of the predicate ‘is an emperor.’

8.4 Uses of identity

Formalisation with identity
Using = one can formalise ‘is [identical to]’ in English.

Formalise:
William ii is Wilhelm ii.

Formalisation: a = b.
Dictionary: a: William ii. b: Wilhelm ii.

Note: don’t confuse the ‘is’ of identity with the ‘is’ of predication.

Formalise:
Wilhelm ii is an emperor.

Formalisation: Ea.
Dictionary: a: Wilhelm. E: . . . is an emperor.

Here ‘is’ forms part of the predicate ‘is an emperor.’

8.4 Uses of identity

Formalisation with identity
Using = one can formalise ‘is [identical to]’ in English.

Formalise:
William ii is Wilhelm ii.

Formalisation: a = b.
Dictionary: a: William ii. b: Wilhelm ii.

Note: don’t confuse the ‘is’ of identity with the ‘is’ of predication.

Formalise:
Wilhelm ii is an emperor.

Formalisation: Ea.
Dictionary: a: Wilhelm. E: . . . is an emperor.

Here ‘is’ forms part of the predicate ‘is an emperor.’

8.4 Uses of identity

Identity can also be used to formalise numerical quantifiers.

Dictionary: P : . . . is a perfect being.

Formalise
(1) There are at least two perfect beings.
Incorrect formalisation: ∃x∃y(Px ∧ Py).
Correct formalisation: ∃x∃y(Px ∧ Py ∧ ¬x = y).

(2) There is at most one perfect being.
Formalisation: ¬∃x∃y(Px ∧ Py ∧ ¬x = y).
Alternative formalisation: ∀x∀y((Px ∧ Py) → x = y).

(3) There is exactly one perfect being.
Formalisation: ∃xPx ∧ ∀x∀y((Px ∧ Py) → x = y).
Alternative formalisation: ∃x(Px ∧ ∀y(Py → y = x)).

8.4 Uses of identity

Identity can also be used to formalise numerical quantifiers.

Dictionary: P : . . . is a perfect being.

Formalise
(1) There are at least two perfect beings.

Incorrect formalisation: ∃x∃y(Px ∧ Py).
Correct formalisation: ∃x∃y(Px ∧ Py ∧ ¬x = y).

(2) There is at most one perfect being.
Formalisation: ¬∃x∃y(Px ∧ Py ∧ ¬x = y).
Alternative formalisation: ∀x∀y((Px ∧ Py) → x = y).

(3) There is exactly one perfect being.
Formalisation: ∃xPx ∧ ∀x∀y((Px ∧ Py) → x = y).
Alternative formalisation: ∃x(Px ∧ ∀y(Py → y = x)).

8.4 Uses of identity

Identity can also be used to formalise numerical quantifiers.

Dictionary: P : . . . is a perfect being.

Formalise
(1) There are at least two perfect beings.
Incorrect formalisation: ∃x∃y(Px ∧ Py).

Correct formalisation: ∃x∃y(Px ∧ Py ∧ ¬x = y).

(2) There is at most one perfect being.
Formalisation: ¬∃x∃y(Px ∧ Py ∧ ¬x = y).
Alternative formalisation: ∀x∀y((Px ∧ Py) → x = y).

(3) There is exactly one perfect being.
Formalisation: ∃xPx ∧ ∀x∀y((Px ∧ Py) → x = y).
Alternative formalisation: ∃x(Px ∧ ∀y(Py → y = x)).

8.4 Uses of identity

Identity can also be used to formalise numerical quantifiers.

Dictionary: P : . . . is a perfect being.

Formalise
(1) There are at least two perfect beings.
Incorrect formalisation: ∃x∃y(Px ∧ Py).
Correct formalisation: ∃x∃y(Px ∧ Py ∧ ¬x = y).

(2) There is at most one perfect being.
Formalisation: ¬∃x∃y(Px ∧ Py ∧ ¬x = y).
Alternative formalisation: ∀x∀y((Px ∧ Py) → x = y).

(3) There is exactly one perfect being.
Formalisation: ∃xPx ∧ ∀x∀y((Px ∧ Py) → x = y).
Alternative formalisation: ∃x(Px ∧ ∀y(Py → y = x)).

8.4 Uses of identity

Identity can also be used to formalise numerical quantifiers.

Dictionary: P : . . . is a perfect being.

Formalise
(1) There are at least two perfect beings.
Incorrect formalisation: ∃x∃y(Px ∧ Py).
Correct formalisation: ∃x∃y(Px ∧ Py ∧ ¬x = y).

(2) There is at most one perfect being.

Formalisation: ¬∃x∃y(Px ∧ Py ∧ ¬x = y).
Alternative formalisation: ∀x∀y((Px ∧ Py) → x = y).

(3) There is exactly one perfect being.
Formalisation: ∃xPx ∧ ∀x∀y((Px ∧ Py) → x = y).
Alternative formalisation: ∃x(Px ∧ ∀y(Py → y = x)).

8.4 Uses of identity

Identity can also be used to formalise numerical quantifiers.

Dictionary: P : . . . is a perfect being.

Formalise
(1) There are at least two perfect beings.
Incorrect formalisation: ∃x∃y(Px ∧ Py).
Correct formalisation: ∃x∃y(Px ∧ Py ∧ ¬x = y).

(2) There is at most one perfect being.
Formalisation: ¬∃x∃y(Px ∧ Py ∧ ¬x = y).

Alternative formalisation: ∀x∀y((Px ∧ Py) → x = y).

(3) There is exactly one perfect being.
Formalisation: ∃xPx ∧ ∀x∀y((Px ∧ Py) → x = y).
Alternative formalisation: ∃x(Px ∧ ∀y(Py → y = x)).

8.4 Uses of identity

Identity can also be used to formalise numerical quantifiers.

Dictionary: P : . . . is a perfect being.

Formalise
(1) There are at least two perfect beings.
Incorrect formalisation: ∃x∃y(Px ∧ Py).
Correct formalisation: ∃x∃y(Px ∧ Py ∧ ¬x = y).

(2) There is at most one perfect being.
Formalisation: ¬∃x∃y(Px ∧ Py ∧ ¬x = y).
Alternative formalisation: ∀x∀y((Px ∧ Py) → x = y).

(3) There is exactly one perfect being.
Formalisation: ∃xPx ∧ ∀x∀y((Px ∧ Py) → x = y).
Alternative formalisation: ∃x(Px ∧ ∀y(Py → y = x)).

8.4 Uses of identity

Identity can also be used to formalise numerical quantifiers.

Dictionary: P : . . . is a perfect being.

Formalise
(1) There are at least two perfect beings.
Incorrect formalisation: ∃x∃y(Px ∧ Py).
Correct formalisation: ∃x∃y(Px ∧ Py ∧ ¬x = y).

(2) There is at most one perfect being.
Formalisation: ¬∃x∃y(Px ∧ Py ∧ ¬x = y).
Alternative formalisation: ∀x∀y((Px ∧ Py) → x = y).

(3) There is exactly one perfect being.

Formalisation: ∃xPx ∧ ∀x∀y((Px ∧ Py) → x = y).
Alternative formalisation: ∃x(Px ∧ ∀y(Py → y = x)).

8.4 Uses of identity

Identity can also be used to formalise numerical quantifiers.

Dictionary: P : . . . is a perfect being.

Formalise
(1) There are at least two perfect beings.
Incorrect formalisation: ∃x∃y(Px ∧ Py).
Correct formalisation: ∃x∃y(Px ∧ Py ∧ ¬x = y).

(2) There is at most one perfect being.
Formalisation: ¬∃x∃y(Px ∧ Py ∧ ¬x = y).
Alternative formalisation: ∀x∀y((Px ∧ Py) → x = y).

(3) There is exactly one perfect being.
Formalisation: ∃xPx ∧ ∀x∀y((Px ∧ Py) → x = y).

Alternative formalisation: ∃x(Px ∧ ∀y(Py → y = x)).

8.4 Uses of identity

Identity can also be used to formalise numerical quantifiers.

Dictionary: P : . . . is a perfect being.

Formalise
(1) There are at least two perfect beings.
Incorrect formalisation: ∃x∃y(Px ∧ Py).
Correct formalisation: ∃x∃y(Px ∧ Py ∧ ¬x = y).

(2) There is at most one perfect being.
Formalisation: ¬∃x∃y(Px ∧ Py ∧ ¬x = y).
Alternative formalisation: ∀x∀y((Px ∧ Py) → x = y).

(3) There is exactly one perfect being.
Formalisation: ∃xPx ∧ ∀x∀y((Px ∧ Py) → x = y).
Alternative formalisation: ∃x(Px ∧ ∀y(Py → y = x)).

8.4 Uses of identity

Definite descriptions

Examples of definite descriptions:
‘the Queen’
‘Bellerophon’s winged horse’
‘the author of Ulysses’

In L2: the best we can do is to formalise definite
descriptions as constants.

But this isn’t perfect. . .

8.4 Uses of identity

Definite descriptions

Examples of definite descriptions:
‘the Queen’
‘Bellerophon’s winged horse’
‘the author of Ulysses’

In L2: the best we can do is to formalise definite
descriptions as constants.

But this isn’t perfect. . .

8.4 Uses of identity

Definite descriptions

Examples of definite descriptions:
‘the Queen’
‘Bellerophon’s winged horse’
‘the author of Ulysses’

In L2: the best we can do is to formalise definite
descriptions as constants.

But this isn’t perfect. . .

8.4 Uses of identity

Example

Not valid

Bellerophon’s winged horse isn’t real; so there is something
that is Bellerophon’s winged horse.

The obvious formalisation with constants is valid.

Formalisation: premiss: ¬Rb. Conclusion: ∃x(x = b).
Dictionary: R: . . . is real. b: Bellerophon’s winged horse.

[

b = b

]

∃x(x = b)

(In fact: the conclusion is a logical truth.)

Source of the trouble:
L=-constants always refer to an object in a L=-structure.
definite descriptions may fail to pick out a unique object.

8.4 Uses of identity

Example Not valid
Bellerophon’s winged horse isn’t real; so there is something
that is Bellerophon’s winged horse.

The obvious formalisation with constants is valid.

Formalisation: premiss: ¬Rb. Conclusion: ∃x(x = b).
Dictionary: R: . . . is real. b: Bellerophon’s winged horse.

[

b = b

]

∃x(x = b)

(In fact: the conclusion is a logical truth.)

Source of the trouble:
L=-constants always refer to an object in a L=-structure.
definite descriptions may fail to pick out a unique object.

8.4 Uses of identity

Example Not valid
Bellerophon’s winged horse isn’t real; so there is something
that is Bellerophon’s winged horse.

The obvious formalisation with constants is valid.

Formalisation: premiss: ¬Rb. Conclusion: ∃x(x = b).
Dictionary: R: . . . is real. b: Bellerophon’s winged horse.

[

b = b

]

∃x(x = b)

(In fact: the conclusion is a logical truth.)

Source of the trouble:
L=-constants always refer to an object in a L=-structure.
definite descriptions may fail to pick out a unique object.

8.4 Uses of identity

Example Not valid
Bellerophon’s winged horse isn’t real; so there is something
that is Bellerophon’s winged horse.

The obvious formalisation with constants is valid.

Formalisation: premiss: ¬Rb. Conclusion: ∃x(x = b).
Dictionary: R: . . . is real. b: Bellerophon’s winged horse.

[

b = b

]

∃x(x = b)

(In fact: the conclusion is a logical truth.)

Source of the trouble:
L=-constants always refer to an object in a L=-structure.
definite descriptions may fail to pick out a unique object.

8.4 Uses of identity

Example Not valid
Bellerophon’s winged horse isn’t real; so there is something
that is Bellerophon’s winged horse.

The obvious formalisation with constants is valid.

Formalisation: premiss: ¬Rb. Conclusion: ∃x(x = b).
Dictionary: R: . . . is real. b: Bellerophon’s winged horse.

[

b = b

]

∃x(x = b)

(In fact: the conclusion is a logical truth.)

Source of the trouble:
L=-constants always refer to an object in a L=-structure.
definite descriptions may fail to pick out a unique object.

8.4 Uses of identity

Example Not valid
Bellerophon’s winged horse isn’t real; so there is something
that is Bellerophon’s winged horse.

The obvious formalisation with constants is valid.

Formalisation: premiss: ¬Rb. Conclusion: ∃x(x = b).
Dictionary: R: . . . is real. b: Bellerophon’s winged horse.

[b = b]

∃x(x = b)

(In fact: the conclusion is a logical truth.)

Source of the trouble:
L=-constants always refer to an object in a L=-structure.
definite descriptions may fail to pick out a unique object.

8.4 Uses of identity

Example Not valid
Bellerophon’s winged horse isn’t real; so there is something
that is Bellerophon’s winged horse.

The obvious formalisation with constants is valid.

Formalisation: premiss: ¬Rb. Conclusion: ∃x(x = b).
Dictionary: R: . . . is real. b: Bellerophon’s winged horse.

[b = b]

∃x(x = b)

(In fact: the conclusion is a logical truth.)

Source of the trouble:
L=-constants always refer to an object in a L=-structure.
definite descriptions may fail to pick out a unique object.

8.4 Uses of identity

Example Not valid
Bellerophon’s winged horse isn’t real; so there is something
that is Bellerophon’s winged horse.

The obvious formalisation with constants is valid.

Formalisation: premiss: ¬Rb. Conclusion: ∃x(x = b).
Dictionary: R: . . . is real. b: Bellerophon’s winged horse.

[b = b]

∃x(x = b)

(In fact: the conclusion is a logical truth.)

Source of the trouble:
L=-constants always refer to an object in a L=-structure.
definite descriptions may fail to pick out a unique object.

8.4 Uses of identity

Example Not valid
Bellerophon’s winged horse isn’t real; so there is something
that is Bellerophon’s winged horse.

The obvious formalisation with constants is valid.

Formalisation: premiss: ¬Rb. Conclusion: ∃x(x = b).
Dictionary: R: . . . is real. b: Bellerophon’s winged horse.

[b = b]

∃x(x = b)

(In fact: the conclusion is a logical truth.)

Source of the trouble:
L=-constants always refer to an object in a L=-structure.
definite descriptions may fail to pick out a unique object.

8.4 Uses of identity

Russell’s theory of descriptions.
There’s a better way to formalise definite descriptions in L=.

Formalise:
The author of Ulysses wrote Dubliners.

Russell analyses this as the conjunction of two claims.

(i) There is exactly one author of Ulysses
(ii) and it wrote Dubliners.

Dictionary: A: . . . is an author of Ulysses.
W: . . . wrote Dubliners.

Formalisation: ∃x
(
Ax ∧ ∀y(Ay → y = x) ∧Wx

)

8.4 Uses of identity

Russell’s theory of descriptions.
There’s a better way to formalise definite descriptions in L=.

Formalise:
The author of Ulysses wrote Dubliners.

Russell analyses this as the conjunction of two claims.

(i) There is exactly one author of Ulysses
(ii) and it wrote Dubliners.

Dictionary: A: . . . is an author of Ulysses.
W: . . . wrote Dubliners.

Formalisation: ∃x
(
Ax ∧ ∀y(Ay → y = x) ∧Wx

)

8.4 Uses of identity

Russell’s theory of descriptions.
There’s a better way to formalise definite descriptions in L=.

Formalise:
The author of Ulysses wrote Dubliners.

Russell analyses this as the conjunction of two claims.

(i) There is exactly one author of Ulysses
(ii) and it wrote Dubliners.

Dictionary: A: . . . is an author of Ulysses.
W: . . . wrote Dubliners.

Formalisation: ∃x
(
Ax ∧ ∀y(Ay → y = x) ∧Wx

)

8.4 Uses of identity

Russell’s theory of descriptions.
There’s a better way to formalise definite descriptions in L=.

Formalise:
The author of Ulysses wrote Dubliners.

Russell analyses this as the conjunction of two claims.

(i) There is exactly one author of Ulysses
(ii) and it wrote Dubliners.

Dictionary: A: . . . is an author of Ulysses.
W: . . . wrote Dubliners.

Formalisation: ∃x
(
Ax ∧ ∀y(Ay → y = x) ∧Wx

)

8.4 Uses of identity

Russell’s theory of descriptions.
There’s a better way to formalise definite descriptions in L=.

Formalise:
The author of Ulysses wrote Dubliners.

Russell analyses this as the conjunction of two claims.

(i) There is exactly one author of Ulysses
(ii) and it wrote Dubliners.

Dictionary: A: . . . is an author of Ulysses.
W: . . . wrote Dubliners.

Formalisation: ∃x
(
Ax ∧ ∀y(Ay → y = x)

∧Wx
)

8.4 Uses of identity

Russell’s theory of descriptions.
There’s a better way to formalise definite descriptions in L=.

Formalise:
The author of Ulysses wrote Dubliners.

Russell analyses this as the conjunction of two claims.

(i) There is exactly one author of Ulysses
(ii) and it wrote Dubliners.

Dictionary: A: . . . is an author of Ulysses.
W: . . . wrote Dubliners.

Formalisation: ∃x
(
Ax ∧ ∀y(Ay → y = x) ∧Wx

)

8.4 Uses of identity

Formalise:
Bellerophon’s winged horse isn’t real.

R: . . . is real. B: . . . is a winged horse belonging to Bellerophon.

On Russell’s view this can have two readings.

Paraphrase 1: (i) there is exactly one winged horse belonging to
Bellerophon and (ii) it is not real.

Formalisation 1: ∃x
(
Bx ∧ ∀y(By → y = x) ∧ ¬Rx

)
.

Dubious: this is true only if there are non-real things .

Paraphrase 2: It’s not the case that
(
(i) there is exactly one

winged horse belonging to Bellerophon and (ii) it is real
)
.

Formalisation 2: ¬∃x
(
Bx ∧ ∀y(By → y = x) ∧Rx

)
.

8.4 Uses of identity

Formalise:
Bellerophon’s winged horse isn’t real.

R: . . . is real. B: . . . is a winged horse belonging to Bellerophon.

On Russell’s view this can have two readings.

Paraphrase 1: (i) there is exactly one winged horse belonging to
Bellerophon and (ii) it is not real.

Formalisation 1: ∃x
(
Bx ∧ ∀y(By → y = x) ∧ ¬Rx

)
.

Dubious: this is true only if there are non-real things .

Paraphrase 2: It’s not the case that
(
(i) there is exactly one

winged horse belonging to Bellerophon and (ii) it is real
)
.

Formalisation 2: ¬∃x
(
Bx ∧ ∀y(By → y = x) ∧Rx

)
.

8.4 Uses of identity

Formalise:
Bellerophon’s winged horse isn’t real.

R: . . . is real. B: . . . is a winged horse belonging to Bellerophon.

On Russell’s view this can have two readings.

Paraphrase 1: (i) there is exactly one winged horse belonging to
Bellerophon and (ii) it is not real.

Formalisation 1: ∃x
(
Bx ∧ ∀y(By → y = x) ∧ ¬Rx

)
.

Dubious: this is true only if there are non-real things .

Paraphrase 2: It’s not the case that
(
(i) there is exactly one

winged horse belonging to Bellerophon and (ii) it is real
)
.

Formalisation 2: ¬∃x
(
Bx ∧ ∀y(By → y = x) ∧Rx

)
.

8.4 Uses of identity

Formalise:
Bellerophon’s winged horse isn’t real.

R: . . . is real. B: . . . is a winged horse belonging to Bellerophon.

On Russell’s view this can have two readings.

Paraphrase 1: (i) there is exactly one winged horse belonging to
Bellerophon and (ii) it is not real.

Formalisation 1: ∃x
(
Bx ∧ ∀y(By → y = x) ∧ ¬Rx

)
.

Dubious: this is true only if there are non-real things .

Paraphrase 2: It’s not the case that
(
(i) there is exactly one

winged horse belonging to Bellerophon and (ii) it is real
)
.

Formalisation 2: ¬∃x
(
Bx ∧ ∀y(By → y = x) ∧Rx

)
.

8.4 Uses of identity

Formalise:
Bellerophon’s winged horse isn’t real.

R: . . . is real. B: . . . is a winged horse belonging to Bellerophon.

On Russell’s view this can have two readings.

Paraphrase 1: (i) there is exactly one winged horse belonging to
Bellerophon and (ii) it is not real.

Formalisation 1: ∃x
(
Bx ∧ ∀y(By → y = x) ∧ ¬Rx

)
.

Dubious: this is true only if there are non-real things .

Paraphrase 2: It’s not the case that
(
(i) there is exactly one

winged horse belonging to Bellerophon and (ii) it is real
)
.

Formalisation 2: ¬∃x
(
Bx ∧ ∀y(By → y = x) ∧Rx

)
.

8.4 Uses of identity

Formalise:
Bellerophon’s winged horse isn’t real.

R: . . . is real. B: . . . is a winged horse belonging to Bellerophon.

On Russell’s view this can have two readings.

Paraphrase 1: (i) there is exactly one winged horse belonging to
Bellerophon and (ii) it is not real.

Formalisation 1: ∃x
(
Bx ∧ ∀y(By → y = x) ∧ ¬Rx

)
.

Dubious: this is true only if there are non-real things .

Paraphrase 2: It’s not the case that
(
(i) there is exactly one

winged horse belonging to Bellerophon and (ii) it is real
)
.

Formalisation 2: ¬∃x
(
Bx ∧ ∀y(By → y = x) ∧Rx

)
.

8.4 Uses of identity

Formalise:
Bellerophon’s winged horse isn’t real.

R: . . . is real. B: . . . is a winged horse belonging to Bellerophon.

On Russell’s view this can have two readings.

Paraphrase 1: (i) there is exactly one winged horse belonging to
Bellerophon and (ii) it is not real.

Formalisation 1: ∃x
(
Bx ∧ ∀y(By → y = x) ∧ ¬Rx

)
.

Dubious: this is true only if there are non-real things .

Paraphrase 2: It’s not the case that
(
(i) there is exactly one

winged horse belonging to Bellerophon and (ii) it is real
)
.

Formalisation 2: ¬∃x
(
Bx ∧ ∀y(By → y = x) ∧Rx

)
.

8.4 Uses of identity

Example Not valid
Bellerophon’s winged horse isn’t real; so there is something
that is Bellerophon’s winged horse.

We can capture its non-validity by using the second
formalisation of the premiss.

Dictionary: R: . . . is real.
B: . . . is a winged horse belonging to Bellerophon.

Formalisation

Not valid

Premiss: ¬∃x
(
Bx ∧ ∀y(By → y = x) ∧Rx

)
.

Conclusion: ∃xBx.
The structure A is a counterexample to this argument.

DA = {x : x is a horse}; |B|A = ∅.
(It doesn’t matter what the extension of R is here.)

8.4 Uses of identity

Example Not valid
Bellerophon’s winged horse isn’t real; so there is something
that is Bellerophon’s winged horse.

We can capture its non-validity by using the second
formalisation of the premiss.

Dictionary: R: . . . is real.
B: . . . is a winged horse belonging to Bellerophon.

Formalisation

Not valid

Premiss: ¬∃x
(
Bx ∧ ∀y(By → y = x) ∧Rx

)
.

Conclusion: ∃xBx.
The structure A is a counterexample to this argument.

DA = {x : x is a horse}; |B|A = ∅.
(It doesn’t matter what the extension of R is here.)

8.4 Uses of identity

Example Not valid
Bellerophon’s winged horse isn’t real; so there is something
that is Bellerophon’s winged horse.

We can capture its non-validity by using the second
formalisation of the premiss.

Dictionary: R: . . . is real.
B: . . . is a winged horse belonging to Bellerophon.

Formalisation

Not valid

Premiss: ¬∃x
(
Bx ∧ ∀y(By → y = x) ∧Rx

)
.

Conclusion: ∃xBx.
The structure A is a counterexample to this argument.

DA = {x : x is a horse}; |B|A = ∅.
(It doesn’t matter what the extension of R is here.)

8.4 Uses of identity

Example Not valid
Bellerophon’s winged horse isn’t real; so there is something
that is Bellerophon’s winged horse.

We can capture its non-validity by using the second
formalisation of the premiss.

Dictionary: R: . . . is real.
B: . . . is a winged horse belonging to Bellerophon.

Formalisation

Not valid

Premiss: ¬∃x
(
Bx ∧ ∀y(By → y = x) ∧Rx

)
.

Conclusion: ∃xBx.
The structure A is a counterexample to this argument.

DA = {x : x is a horse}; |B|A = ∅.
(It doesn’t matter what the extension of R is here.)

8.4 Uses of identity

Example Not valid
Bellerophon’s winged horse isn’t real; so there is something
that is Bellerophon’s winged horse.

We can capture its non-validity by using the second
formalisation of the premiss.

Dictionary: R: . . . is real.
B: . . . is a winged horse belonging to Bellerophon.

Formalisation

Not valid

Premiss: ¬∃x
(
Bx ∧ ∀y(By → y = x) ∧Rx

)
.

Conclusion: ∃xBx.

The structure A is a counterexample to this argument.
DA = {x : x is a horse}; |B|A = ∅.

(It doesn’t matter what the extension of R is here.)

8.4 Uses of identity

Example Not valid
Bellerophon’s winged horse isn’t real; so there is something
that is Bellerophon’s winged horse.

We can capture its non-validity by using the second
formalisation of the premiss.

Dictionary: R: . . . is real.
B: . . . is a winged horse belonging to Bellerophon.

Formalisation

Not valid

Premiss: ¬∃x
(
Bx ∧ ∀y(By → y = x) ∧Rx

)
.

Conclusion: ∃xBx.
The structure A is a counterexample to this argument.

DA = {x : x is a horse}; |B|A = ∅.

(It doesn’t matter what the extension of R is here.)

8.4 Uses of identity

Example Not valid
Bellerophon’s winged horse isn’t real; so there is something
that is Bellerophon’s winged horse.

We can capture its non-validity by using the second
formalisation of the premiss.

Dictionary: R: . . . is real.
B: . . . is a winged horse belonging to Bellerophon.

Formalisation Not valid
Premiss: ¬∃x

(
Bx ∧ ∀y(By → y = x) ∧Rx

)
.

Conclusion: ∃xBx.
The structure A is a counterexample to this argument.

DA = {x : x is a horse}; |B|A = ∅.

(It doesn’t matter what the extension of R is here.)

8.4 Uses of identity

Example Not valid
Bellerophon’s winged horse isn’t real; so there is something
that is Bellerophon’s winged horse.

We can capture its non-validity by using the second
formalisation of the premiss.

Dictionary: R: . . . is real.
B: . . . is a winged horse belonging to Bellerophon.

Formalisation Not valid
Premiss: ¬∃x

(
Bx ∧ ∀y(By → y = x) ∧Rx

)
.

Conclusion: ∃xBx.
The structure A is a counterexample to this argument.

DA = {x : x is a horse}; |B|A = ∅.
(It doesn’t matter what the extension of R is here.)

8.4 Uses of identity

Multiple descriptions
We deal with these much like multiple quantifiers.

Formalise
The author of Ulysses likes the author of the Odyssey

Dictionary: U: . . . is an author of Ulysses
O: . . . is an author of the Odyssey. L: . . . likes . . .

It’s helpful to break this into two steps.

Partial formalisation:

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ x1 likes the author of the Odyssey
)

It remains to formalise ‘x1 likes the author of the Odyssey’.

8.4 Uses of identity

Multiple descriptions
We deal with these much like multiple quantifiers.

Formalise
The author of Ulysses likes the author of the Odyssey

Dictionary: U: . . . is an author of Ulysses
O: . . . is an author of the Odyssey. L: . . . likes . . .

It’s helpful to break this into two steps.

Partial formalisation:

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ x1 likes the author of the Odyssey
)

It remains to formalise ‘x1 likes the author of the Odyssey’.

8.4 Uses of identity

Multiple descriptions
We deal with these much like multiple quantifiers.

Formalise
The author of Ulysses likes the author of the Odyssey

Dictionary: U: . . . is an author of Ulysses
O: . . . is an author of the Odyssey. L: . . . likes . . .

It’s helpful to break this into two steps.

Partial formalisation:

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ x1 likes the author of the Odyssey
)

It remains to formalise ‘x1 likes the author of the Odyssey’.

8.4 Uses of identity

x1 likes the author of the Odyssey
Paraphrase: the author of the Odyssey is liked by x1.

Formalisation: ∃x2
(
Ox2 ∧ ∀y2(Oy2 → y2 = x2) ∧ Lx1x2

)
.

Finally, we put this together with what we had before.

The author of Ulysses likes the author of the Odyssey

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ x1 likes the author of the Odyssey
)
.

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ ∃x2
(
Ox2 ∧ ∀y2(Oy2 → y2 = x2) ∧ Lx1x2

))
.

8.4 Uses of identity

x1 likes the author of the Odyssey
Paraphrase: the author of the Odyssey is liked by x1.

Formalisation: ∃x2
(
Ox2 ∧ ∀y2(Oy2 → y2 = x2) ∧ Lx1x2

)
.

Finally, we put this together with what we had before.

The author of Ulysses likes the author of the Odyssey

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ x1 likes the author of the Odyssey
)
.

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ ∃x2
(
Ox2 ∧ ∀y2(Oy2 → y2 = x2) ∧ Lx1x2

))
.

8.4 Uses of identity

x1 likes the author of the Odyssey
Paraphrase: the author of the Odyssey is liked by x1.

Formalisation: ∃x2
(
Ox2 ∧ ∀y2(Oy2 → y2 = x2) ∧ Lx1x2

)
.

Finally, we put this together with what we had before.

The author of Ulysses likes the author of the Odyssey

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ x1 likes the author of the Odyssey
)
.

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ ∃x2
(
Ox2 ∧ ∀y2(Oy2 → y2 = x2) ∧ Lx1x2

))
.

8.4 Uses of identity

x1 likes the author of the Odyssey
Paraphrase: the author of the Odyssey is liked by x1.

Formalisation: ∃x2
(
Ox2 ∧ ∀y2(Oy2 → y2 = x2) ∧ Lx1x2

)
.

Finally, we put this together with what we had before.

The author of Ulysses likes the author of the Odyssey

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ x1 likes the author of the Odyssey
)
.

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ ∃x2
(
Ox2 ∧ ∀y2(Oy2 → y2 = x2) ∧ Lx1x2

))
.

8.4 Uses of identity

x1 likes the author of the Odyssey
Paraphrase: the author of the Odyssey is liked by x1.

Formalisation: ∃x2
(
Ox2 ∧ ∀y2(Oy2 → y2 = x2) ∧ Lx1x2

)
.

Finally, we put this together with what we had before.

The author of Ulysses likes the author of the Odyssey

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ x1 likes the author of the Odyssey
)
.

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ ∃x2
(
Ox2 ∧ ∀y2(Oy2 → y2 = x2) ∧ Lx1x2

))
.

8.4 Uses of identity

x1 likes the author of the Odyssey
Paraphrase: the author of the Odyssey is liked by x1.

Formalisation: ∃x2
(
Ox2 ∧ ∀y2(Oy2 → y2 = x2) ∧ Lx1x2

)
.

Finally, we put this together with what we had before.

The author of Ulysses likes the author of the Odyssey

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ x1 likes the author of the Odyssey
)
.

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ ∃x2
(
Ox2 ∧ ∀y2(Oy2 → y2 = x2) ∧ Lx1x2

))
.

8.4 Uses of identity

x1 likes the author of the Odyssey
Paraphrase: the author of the Odyssey is liked by x1.

Formalisation: ∃x2
(
Ox2 ∧ ∀y2(Oy2 → y2 = x2) ∧ Lx1x2

)
.

Finally, we put this together with what we had before.

The author of Ulysses likes the author of the Odyssey

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ x1 likes the author of the Odyssey
)
.

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ ∃x2
(
Ox2 ∧ ∀y2(Oy2 → y2 = x2) ∧ Lx1x2

))
.

8.4 Uses of identity

x1 likes the author of the Odyssey
Paraphrase: the author of the Odyssey is liked by x1.

Formalisation: ∃x2
(
Ox2 ∧ ∀y2(Oy2 → y2 = x2) ∧ Lx1x2

)
.

Finally, we put this together with what we had before.

The author of Ulysses likes the author of the Odyssey

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ x1 likes the author of the Odyssey
)
.

∃x1
(
Ux1 ∧ ∀y1(Uy1 → y1 = x1)

∧ ∃x2
(
Ox2 ∧ ∀y2(Oy2 → y2 = x2) ∧ Lx1x2

))
.

Closing

Logical constants
¬,∧,∨,→,↔,∀,∃ and = are our only logical expressions. 45

This raises two questions:

Q1 What’s special about these expressions?
A1 Alfred Tarski proposes to analyse topic neutrality in

terms of ‘permutation invariance’
Roughly: logical expressions are the ones whose
meaning is insensitive to which object is which.
See Tarski ‘What are Logical Notions?’ History and
Philosophy of Logic 7, 143–154.

Closing

Logical constants
¬,∧,∨,→,↔,∀,∃ and = are our only logical expressions. 45

This raises two questions:

Q1 What’s special about these expressions?
A1 Alfred Tarski proposes to analyse topic neutrality in

terms of ‘permutation invariance’
Roughly: logical expressions are the ones whose
meaning is insensitive to which object is which.
See Tarski ‘What are Logical Notions?’ History and
Philosophy of Logic 7, 143–154.

Closing

Logical constants
¬,∧,∨,→,↔,∀,∃ and = are our only logical expressions. 45

This raises two questions:

Q1 What’s special about these expressions?

A1 Alfred Tarski proposes to analyse topic neutrality in
terms of ‘permutation invariance’
Roughly: logical expressions are the ones whose
meaning is insensitive to which object is which.
See Tarski ‘What are Logical Notions?’ History and
Philosophy of Logic 7, 143–154.

Closing

Logical constants
¬,∧,∨,→,↔,∀,∃ and = are our only logical expressions. 45

This raises two questions:

Q1 What’s special about these expressions?
A1 Alfred Tarski proposes to analyse topic neutrality in

terms of ‘permutation invariance’

Roughly: logical expressions are the ones whose
meaning is insensitive to which object is which.
See Tarski ‘What are Logical Notions?’ History and
Philosophy of Logic 7, 143–154.

Closing

Logical constants
¬,∧,∨,→,↔,∀,∃ and = are our only logical expressions. 45

This raises two questions:

Q1 What’s special about these expressions?
A1 Alfred Tarski proposes to analyse topic neutrality in

terms of ‘permutation invariance’
Roughly: logical expressions are the ones whose
meaning is insensitive to which object is which.

See Tarski ‘What are Logical Notions?’ History and
Philosophy of Logic 7, 143–154.

Closing

Logical constants
¬,∧,∨,→,↔,∀,∃ and = are our only logical expressions. 45

This raises two questions:

Q1 What’s special about these expressions?
A1 Alfred Tarski proposes to analyse topic neutrality in

terms of ‘permutation invariance’
Roughly: logical expressions are the ones whose
meaning is insensitive to which object is which.
See Tarski ‘What are Logical Notions?’ History and
Philosophy of Logic 7, 143–154.

Closing

Q2 What happens if we add more logical constants?

A2 This is the business of philosophical logic.

Extension of L2 New logical expressions

Generalised quantifiers more than half
infinitely many, etc.

Modal logic It is necessarily the case that
It is possibly the case that

Deontic logic It is obligatory that
It is permissible that

See the finals paper 127: Philosophical Logic.

Closing

Q2 What happens if we add more logical constants?
A2 This is the business of philosophical logic.

Extension of L2 New logical expressions

Generalised quantifiers more than half
infinitely many, etc.

Modal logic It is necessarily the case that
It is possibly the case that

Deontic logic It is obligatory that
It is permissible that

See the finals paper 127: Philosophical Logic.

Closing

Q2 What happens if we add more logical constants?
A2 This is the business of philosophical logic.

Extension of L2 New logical expressions

Generalised quantifiers more than half
infinitely many, etc.

Modal logic It is necessarily the case that
It is possibly the case that

Deontic logic It is obligatory that
It is permissible that

See the finals paper 127: Philosophical Logic.

Closing

Q2 What happens if we add more logical constants?
A2 This is the business of philosophical logic.

Extension of L2 New logical expressions

Generalised quantifiers more than half
infinitely many, etc.

Modal logic It is necessarily the case that
It is possibly the case that

Deontic logic It is obligatory that
It is permissible that

See the finals paper 127: Philosophical Logic.

Closing

Decidability
There’s an important difference between L1 and L=.

Let Γ be a finite set of sentences and φ a sentence.

Propositional Case
When these are all L1-sentences, we have a single effective
procedure to determine whether or not Γ � φ.

Construct a full truth-table

This method can easily be automated.

Predicate Case
When these are L=-sentences, we have two methods.

To establish Γ � φ we construct a Natural Deduction proof.
To establish Γ 6� φ we construct a counterexample.

But: we need to know whether or not the argument is valid
before we know which method to apply.

Closing

Decidability
There’s an important difference between L1 and L=.
Let Γ be a finite set of sentences and φ a sentence.

Propositional Case
When these are all L1-sentences, we have a single effective
procedure to determine whether or not Γ � φ.

Construct a full truth-table

This method can easily be automated.

Predicate Case
When these are L=-sentences, we have two methods.

To establish Γ � φ we construct a Natural Deduction proof.
To establish Γ 6� φ we construct a counterexample.

But: we need to know whether or not the argument is valid
before we know which method to apply.

Closing

Decidability
There’s an important difference between L1 and L=.
Let Γ be a finite set of sentences and φ a sentence.

Propositional Case
When these are all L1-sentences, we have a single effective
procedure to determine whether or not Γ � φ.

Construct a full truth-table

This method can easily be automated.

Predicate Case
When these are L=-sentences, we have two methods.

To establish Γ � φ we construct a Natural Deduction proof.
To establish Γ 6� φ we construct a counterexample.

But: we need to know whether or not the argument is valid
before we know which method to apply.

Closing

Decidability
There’s an important difference between L1 and L=.
Let Γ be a finite set of sentences and φ a sentence.

Propositional Case
When these are all L1-sentences, we have a single effective
procedure to determine whether or not Γ � φ.

Construct a full truth-table

This method can easily be automated.

Predicate Case
When these are L=-sentences, we have two methods.

To establish Γ � φ we construct a Natural Deduction proof.
To establish Γ 6� φ we construct a counterexample.

But: we need to know whether or not the argument is valid
before we know which method to apply.

Closing

Decidability
There’s an important difference between L1 and L=.
Let Γ be a finite set of sentences and φ a sentence.

Propositional Case
When these are all L1-sentences, we have a single effective
procedure to determine whether or not Γ � φ.

Construct a full truth-table

This method can easily be automated.

Predicate Case
When these are L=-sentences, we have two methods.

To establish Γ � φ we construct a Natural Deduction proof.
To establish Γ 6� φ we construct a counterexample.

But: we need to know whether or not the argument is valid
before we know which method to apply.

Closing

Decidability
There’s an important difference between L1 and L=.
Let Γ be a finite set of sentences and φ a sentence.

Propositional Case
When these are all L1-sentences, we have a single effective
procedure to determine whether or not Γ � φ.

Construct a full truth-table

This method can easily be automated.

Predicate Case
When these are L=-sentences, we have two methods.

To establish Γ � φ we construct a Natural Deduction proof.

To establish Γ 6� φ we construct a counterexample.

But: we need to know whether or not the argument is valid
before we know which method to apply.

Closing

Decidability
There’s an important difference between L1 and L=.
Let Γ be a finite set of sentences and φ a sentence.

Propositional Case
When these are all L1-sentences, we have a single effective
procedure to determine whether or not Γ � φ.

Construct a full truth-table

This method can easily be automated.

Predicate Case
When these are L=-sentences, we have two methods.

To establish Γ � φ we construct a Natural Deduction proof.
To establish Γ 6� φ we construct a counterexample.

But: we need to know whether or not the argument is valid
before we know which method to apply.

Closing

Decidability
There’s an important difference between L1 and L=.
Let Γ be a finite set of sentences and φ a sentence.

Propositional Case
When these are all L1-sentences, we have a single effective
procedure to determine whether or not Γ � φ.

Construct a full truth-table

This method can easily be automated.

Predicate Case
When these are L=-sentences, we have two methods.

To establish Γ � φ we construct a Natural Deduction proof.
To establish Γ 6� φ we construct a counterexample.

But: we need to know whether or not the argument is valid
before we know which method to apply.

Closing

Is there a single effective procedure for determining whether
or not an L=-argument is valid?

On two natural regimentations of ‘effective procedure’
the answer is negative.

Theorem (Church-Turing 1936/7)
There is no ‘recursive’ or ‘Turing computable’ method for
deciding whether an L=-argument with finitely many
premisses is valid.

We cannot write a computer programme that, when
applied to an L=-argument, delivers a ‘yes’/‘no’ output
according to whether the argument is valid or not.
This holds even if no restrictions are imposed on the
memory, disk space, computation time, etc.

Closing

Is there a single effective procedure for determining whether
or not an L=-argument is valid?

On two natural regimentations of ‘effective procedure’
the answer is negative.

Theorem (Church-Turing 1936/7)
There is no ‘recursive’ or ‘Turing computable’ method for
deciding whether an L=-argument with finitely many
premisses is valid.

We cannot write a computer programme that, when
applied to an L=-argument, delivers a ‘yes’/‘no’ output
according to whether the argument is valid or not.
This holds even if no restrictions are imposed on the
memory, disk space, computation time, etc.

Closing

Is there a single effective procedure for determining whether
or not an L=-argument is valid?

On two natural regimentations of ‘effective procedure’
the answer is negative.

Theorem (Church-Turing 1936/7)
There is no ‘recursive’ or ‘Turing computable’ method for
deciding whether an L=-argument with finitely many
premisses is valid.

We cannot write a computer programme that, when
applied to an L=-argument, delivers a ‘yes’/‘no’ output
according to whether the argument is valid or not.
This holds even if no restrictions are imposed on the
memory, disk space, computation time, etc.

Closing

Is there a single effective procedure for determining whether
or not an L=-argument is valid?

On two natural regimentations of ‘effective procedure’
the answer is negative.

Theorem (Church-Turing 1936/7)
There is no ‘recursive’ or ‘Turing computable’ method for
deciding whether an L=-argument with finitely many
premisses is valid.

We cannot write a computer programme that, when
applied to an L=-argument, delivers a ‘yes’/‘no’ output
according to whether the argument is valid or not.

This holds even if no restrictions are imposed on the
memory, disk space, computation time, etc.

Closing

Is there a single effective procedure for determining whether
or not an L=-argument is valid?

On two natural regimentations of ‘effective procedure’
the answer is negative.

Theorem (Church-Turing 1936/7)
There is no ‘recursive’ or ‘Turing computable’ method for
deciding whether an L=-argument with finitely many
premisses is valid.

We cannot write a computer programme that, when
applied to an L=-argument, delivers a ‘yes’/‘no’ output
according to whether the argument is valid or not.
This holds even if no restrictions are imposed on the
memory, disk space, computation time, etc.

fin

	8.1 Qualitative and Numerical Identity
	8.2 The Syntax of L=
	8.3 Semantics
	8.4 Proof Rules for Identity
	8.4 Uses of identity
	Closing

