INTRODUCTION TO LOGIC

Lecture 3 Formalisation in Propositional Logic

Dr. James Studd

There is no other way to learn the truth than through logic Averroes

Outline

- Truth-functionality
- 2 Formalisation
- Omplex sentences
- Ambiguity
- Validity of English arguments

Recall that connectives join one or more sentences together to make compound sentences.

Recall that connectives join one or more sentences together to make compound sentences.

English connectives

- 'It is not the case that'
- 'and'
- 'or'
- 'if, ... then'
- 'if and only if'

Recall that connectives join one or more sentences together to make compound sentences.

English connectives

- 'It is not the case that'
- 'and'
- 'or'
- 'if, ... then'
- 'if and only if'

'It is not the case that' and 'Bertrand Russell likes logic' make 'It is not the case that Bertrand Russell likes logic'

Recall that connectives join one or more sentences together to make compound sentences.

English connectives

- 'It is not the case that'
- 'and'
- 'or'
- 'if, ... then'
- 'if and only if'

'It is not the case that' and 'Bertrand Russell likes logic' make 'It is not the case that Bertrand Russell likes logic'

These correspond to the connectives of \mathcal{L}_1 : \neg , \land , \lor , \rightarrow , \leftrightarrow

More English connectives

- 'It could be the case that'
- 'It must be the case that'
- 'Pope Benedict XVI thought that'
- 'because'
- 'logically entails that'

More English connectives

- 'It could be the case that'
- 'It must be the case that'
- 'Pope Benedict XVI thought that'
- 'because'
- 'logically entails that'

'Pope Benedict XVI thought that' and 'Bertrand Russell likes logic' make 'Pope Benedict XVI thought that Bertrand Russell likes logic'

More English connectives

- 'It could be the case that'
- 'It must be the case that'
- 'Pope Benedict XVI thought that'
- 'because'
- 'logically entails that'

'Pope Benedict XVI thought that' and 'Bertrand Russell likes logic' make 'Pope Benedict XVI thought that Bertrand Russell likes logic'

Only some English connectives can be captured in \mathcal{L}_1 . None of these connectives can be.

Truth functionality

Only truth-functional connectives can be captured in \mathcal{L}_1 .

Truth functionality

Only truth-functional connectives can be captured in \mathcal{L}_1 .

Example: a truth-functional connective

Truth functionality

Only truth-functional connectives can be captured in \mathcal{L}_1 .

Example: a truth-functional connective

A	It is not the case that A
Т	F
F	Т

The truth-value of 'It is possibly the case that A' is **not** fully determined by the truth-value of A

 $A \parallel$ It is possibly the case that A

$$\begin{array}{c|c} A & \text{It is possibly the case that } A \\ \hline T & T \\ F & T \\ \end{array}$$

$$\begin{array}{c|c} A & \text{It is possibly the case that } A \\ \hline T & T \\ F & ? \\ \end{array}$$

The truth-value of 'It is possibly the case that A' is **not** fully determined by the truth-value of A

$$\begin{array}{c|c} A & \text{It is possibly the case that } A \\ \hline T & T \\ F & ? \end{array}$$

Consider the false sentences A_1 and A_2

- A_1 V. Halbach is giving this lecture.
- A_2 Two plus two equals five.

The truth-value of 'It is possibly the case that A' is **not** fully determined by the truth-value of A

$$\begin{array}{c|c} A & \text{It is possibly the case that } A \\ \hline T & T \\ F & ? \end{array}$$

Consider the false sentences A_1 and A_2

 A_1 V. Halbach is giving this lecture. A_2 Two plus two equals five. F

The truth-value of 'It is possibly the case that A' is **not** fully determined by the truth-value of A

$$\begin{array}{c|c} A & \text{It is possibly the case that } A \\ \hline T & T \\ F & ? \end{array}$$

Consider the false sentences A_1 and A_2

A_1 V. Halbach is giving this lecture.	F
A_2 Two plus two equals five.	F

F

Example: a non-truth-functional connective

The truth-value of 'It is possibly the case that A' is **not** fully determined by the truth-value of A

$$\begin{array}{c|c} A & \text{It is possibly the case that } A \\ \hline T & T \\ F & ? \end{array}$$

Consider the false sentences A_1 and A_2

A_1	V. Halbach is giving this lecture.
A_2	Two plus two equals five.

It is possibly the case that A_1 . It is possibly the case that A_2 .

The truth-value of 'It is possibly the case that A' is **not** fully determined by the truth-value of A

$$\begin{array}{c|c} A & \text{It is possibly the case that } A \\ \hline T & T \\ F & ? \end{array}$$

Consider the false sentences A_1 and A_2

A_1 V. Halbach is giving this lecture.	\mathbf{F}
A_2 Two plus two equals five.	\mathbf{F}
It is possibly the case that A_1 .	Т

It is possibly the case that A_2 .

The truth-value of 'It is possibly the case that A' is **not** fully determined by the truth-value of A

$$\begin{array}{c|c} A & \text{It is possibly the case that } A \\ \hline T & T \\ F & ? \end{array}$$

Consider the false sentences A_1 and A_2

A_1 V. Halbach is giving this lecture.	F
A_2 Two plus two equals five.	F
It is possibly the case that A_1 .	Т
It is possibly the case that A_2 .	F

Characterisation: truth-functional (p. 54)

A connective is truth-functional if and only if the truth-value of the compound sentence cannot be changed by replacing a direct subsentence with another having the same truth-value.

NB: replacing non-direct subsentences may change the truth-value.

Formalisation

This is the process of translating English into \mathcal{L}_1 .

20

Formalisation

This is the process of translating English into \mathcal{L}_1 .

Formalise:

It is not the case that Russell likes logic.

20

Formalisation

This is the process of translating English into \mathcal{L}_1 .

Formalise:

It is not the case that Russell likes logic.

 \neg corresponds to 'It is not the case that'.

20

Formalisation

This is the process of translating English into \mathcal{L}_1 .

Formalise:

It is not the case that Russell likes logic.

 \neg corresponds to 'It is not the case that'. Let *R* correspond to 'Russell likes logic'.

Formalisation

This is the process of translating English into \mathcal{L}_1 .

Formalise:		
It is not the case that Russell likes logic. 20		
\neg corresponds to 'It is not the case that'. Let <i>R</i> correspond to 'Russell likes logic'.		
FormalisationDictionary $\neg R$ R : Russell likes logic.		

Formalise:

Russell likes logic and philosophers like conceptual analysis.

Formalise:

Russell likes logic and philosophers like conceptual analysis.

 $egin{array}{c} ext{Formalisation} \ (R \wedge P) \end{array}$

Dictionary

R: Russell likes logic.

P: Philosophers like conceptual analysis.

Formalise:

It could be the case that Russell likes logic

Formalise:

It could be the case that Russell likes logic

Formalisation: C

Formalise:

It could be the case that Russell likes logic

Formalisation: C

Dictionary: C: It could be the case that Russell likes logic.

Formalise:

It could be the case that Russell likes logic

Formalisation: C

Dictionary: C: It could be the case that Russell likes logic.

Formalise:

It is not the case that it could be the case that Russell likes logic.

Formalise:

It could be the case that Russell likes logic

Formalisation: CDictionary: C: It could be the case that Russell likes logic.

Formalise:

It is not the case that it could be the case that Russell likes logic.

Formalisation: $\neg C$

Formalise:

It could be the case that Russell likes logic

Formalisation: CDictionary: C: It could be the case that Russell likes logic.

Formalise:

It is not the case that it could be the case that Russell likes logic.

Formalisation: $\neg C$ Dictionary: C: It could be the case that Russell likes logic.

Formalise:

It could be the case that Russell likes logic

Formalisation: CDictionary: C: It could be the case that Russell likes logic.

Formalise:

It is not the case that it could be the case that Russell likes logic.

Formalisation: $\neg C$

Dictionary: C: It could be the case that Russell likes logic.

Note: it's fine to use letters other than P, Q, R when formalising English sentences.

Formalise:

Russell doesn't like logic

Formalise:

Russell doesn't like logic

Paraphrase: It is not the case that Russell likes logic.

Formalise:

Russell doesn't like logic

Paraphrase: It is not the case that Russell likes logic. Formalisation: $\neg R$

Formalise:

Russell doesn't like logic

Paraphrase: It is not the case that Russell likes logic. **Formalisation**: $\neg \mathbf{R}$ Dictionary: R: Russell likes logic.

Formalise:

Russell doesn't like logic

Paraphrase: It is not the case that Russell likes logic. **Formalisation**: $\neg R$ Dictionary: R: Russell likes logic.

Formalise:

Neither Russell nor Whitehead likes logic.

Formalise:

Russell doesn't like logic

Paraphrase: It is not the case that Russell likes logic. **Formalisation**: $\neg R$ Dictionary: R: Russell likes logic.

Formalise:

Neither Russell nor Whitehead likes logic.

Paraphrase: It is not the case that Russell likes logic and it is not the case that Whitehead likes logic.

Formalise:

Russell doesn't like logic

Paraphrase: It is not the case that Russell likes logic. **Formalisation**: $\neg R$ Dictionary: R: Russell likes logic.

Formalise:

Neither Russell nor Whitehead likes logic.

Paraphrase: It is not the case that Russell likes logic and it is not the case that Whitehead likes logic. Formalisation: $\neg R \land \neg W$

Formalise:

Russell doesn't like logic

Paraphrase: It is not the case that Russell likes logic. **Formalisation**: $\neg R$ Dictionary: R: Russell likes logic.

Formalise:

Neither Russell nor Whitehead likes logic.

Paraphrase: It is not the case that Russell likes logic and it is not the case that Whitehead likes logic. **Formalisation**: $\neg R \land \neg W$ Dictionary: *R*: Russell likes logic. *W*: Whitehead likes logic.

\mathcal{L}_1	standard connective	some other formulations
\wedge	and	but, although unless
\vee	or	unless
_	it is not the case that	not, none, never
\rightarrow	if then	provided that, only if
\leftrightarrow	if then if and only if	precisely if, just in case

\mathcal{L}_1	standard connective	some other formulations
\wedge	and	but, although unless
\vee	or	unless
_	it is not the case that	not, none, never
\rightarrow	if then	provided that, only if
	if and only if	precisely if, just in case

\mathcal{L}_1	standard connective	some other formulations
\wedge	and	but, although unless
\vee	or	unless
_	it is not the case that	not, none, never
\rightarrow	if then	provided that, only if
\leftrightarrow	if then if and only if	precisely if, just in case

\mathcal{L}_1	standard connective	some other formulations
\wedge	and	but, although unless
\vee	or	unless
_	it is not the case that	not, none, never
\rightarrow	if then	provided that, only if
\leftrightarrow	if and only if	precisely if, just in case

\mathcal{L}_1	standard connective	some other formulations
\wedge	and	but, although unless
\vee	or	unless
-	it is not the case that	not, none, never
\rightarrow	if then	provided that, only if
	if and only if	precisely if, just in case

\mathcal{L}_1	standard connective	some other formulations
\wedge	and	but, although unless
\vee	or	unless
-	it is not the case that	not, none, never
\rightarrow	if then	provided that, only if
\leftrightarrow	if and only if	precisely if, just in case

Formalise:

Formalise:

(1) If John revised, [then] he passed.

Formalise:

(1) If John revised, [then] he passed.

Dictionary: R: John revised. P: John passed.

Formalise:

(1) If John revised, [then] he passed.

 $R \to P$

Dictionary: R: John revised. P: John passed. (1) Formalisation: $R \rightarrow P$
Formalise:

(1) If John revised, [then] he passed.

$$R \to P$$

(2) John passed if he revised.

Dictionary: R: John revised. P: John passed.

(1) Formalisation: $R \rightarrow P$

Formalise:

(1) If John revised, [then] he passed.

 $R \to P$

(2) John passed if he revised.

- (1) Formalisation: $R \rightarrow P$
- (2) Paraphrase: (1).

 $\begin{array}{c} R \to P \\ R \to P \end{array}$

Rules of thumb for \rightarrow

Formalise:

- (1) If John revised, [then] he passed.
- (2) John passed if he revised.

- (1) Formalisation: $R \rightarrow P$
- (2) Paraphrase: (1). Formalisation: $R \rightarrow P$

 $R \to P$

Rules of thumb for \rightarrow

Formalise:

- (1) If John revised, [then] he passed.
- (2) John passed if he revised.

 $P \leftarrow R$ i.e. $R \rightarrow P$

- (1) Formalisation: $R \rightarrow P$
- (2) Paraphrase: (1). Formalisation: $R \rightarrow P$

 $R \to P$

 $P \leftarrow R$ i.e. $R \rightarrow P$

Rules of thumb for \rightarrow

Formalise:

- (1) If John revised, [then] he passed.
- (2) John passed if he revised.
- (3) John passed only if he revised.

- (1) Formalisation: $R \rightarrow P$
- (2) Paraphrase: (1). Formalisation: $R \rightarrow P$

 $R \to P$

 $P \leftarrow R'$ i.e. $R \rightarrow P$

Rules of thumb for \rightarrow

Formalise:

- (1) If John revised, [then] he passed.
- (2) John passed if he revised.
- (3) John passed only if he revised.

- (1) Formalisation: $R \to P$
- (2) Paraphrase: (1). Formalisation: $R \rightarrow P$
- (3) Paraphrase: If John passed, John revised.

Formalise:

- (1) If John revised, [then] he passed.
- (2) John passed if he revised.
- (3) John passed only if he revised.

 $P \leftarrow R$ i.e. $R \rightarrow P$

 $P \to R$

 $R \to P$

- (1) Formalisation: $R \to P$
- (2) Paraphrase: (1). Formalisation: $R \rightarrow P$
- (3) Paraphrase: If John passed, John revised. Formalisation: $P \rightarrow R$

Formalise:

- (1) If John revised, [then] he passed.
- (2) John passed if he revised.
- (3) John passed only if he revised.
- (4) John only passed if he revised.

 $P \leftarrow R$ i.e. $R \rightarrow P$

 $P \to R$

 $R \to P$

- (1) Formalisation: $R \to P$
- (2) Paraphrase: (1). Formalisation: $R \rightarrow P$
- (3) Paraphrase: If John passed, John revised. Formalisation: $P \rightarrow R$

Formalise:

- (2) John passed if he revised. $P \leftarrow R'$ i.e. $R \rightarrow P$
- (3) John passed only if he revised.
- (4) John only passed if he revised.

 $P \to R$

 $P \to R$

 $R \to P$

Dictionary: R: John revised. P: John passed.

- (1) Formalisation: $R \to P$
- (2) Paraphrase: (1). Formalisation: $R \rightarrow P$
- (3) Paraphrase: If John passed, John revised. Formalisation: $P \rightarrow R$

(4) Paraphrase: (3). Formalisation: $P \rightarrow R$

Formalise:

(1) If J	ohn revised,	[then] he	passed.
----------	--------------	-----------	---------

- (2) John passed if he revised. $P \leftarrow R'$ i.e. $R \rightarrow P$
- (3) John passed only if he revised.
- (4) John only passed if he revised.

 $P \to R$

 $P \to R$

 $R \to P$

Dictionary: R: John revised. P: John passed.

- (1) Formalisation: $R \to P$
- (2) Paraphrase: (1). Formalisation: $R \rightarrow P$
- (3) Paraphrase: If John passed, John revised. Formalisation: $P \rightarrow R$

(4) Paraphrase: (3). Formalisation: $P \rightarrow R$

'If' mid-sentence corresponds to ' \leftarrow '; 'only if' to $\rightarrow.$

Formalise

If the lecturer hadn't shown up last week, Plato would have given the lecture.

Formalise

If the lecturer hadn't shown up last week, Plato would have given the lecture.

Consider: $\neg S \rightarrow P$. Dictionary: S: The lecturer showed up last week. P: Plato gave the lecture.

Formalise

If the lecturer hadn't shown up last week, Plato would have given the lecture.

Consider: $\neg S \rightarrow P$. Dictionary: S: The lecturer showed up last week. P: Plato gave the lecture.

The English sentence appears to be false.

Formalise

If the lecturer hadn't shown up last week, Plato would have given the lecture.

Consider: $\neg S \rightarrow P$. Dictionary: S: The lecturer showed up last week. P: Plato gave the lecture.

The English sentence appears to be false. But when $|S|_{\mathcal{A}} = T$, $|\neg S \rightarrow P|_{\mathcal{A}} = T$.

Formalise

If the lecturer hadn't shown up last week, Plato would have given the lecture.

Consider: $\neg S \rightarrow P$. Dictionary: S: The lecturer showed up last week. P: Plato gave the lecture.

The English sentence appears to be false. But when $|S|_{\mathcal{A}} = T$, $|\neg S \rightarrow P|_{\mathcal{A}} = T$.

See Sainsbury, Logical Forms, ch. 2 for further discussion.

Formalise

If David folded or David didn't have the ace, Victoria won.

Formalise

If David folded or David didn't have the ace, Victoria won.

Paraphrase

If David folded or David didn't have the ace, Victoria won.

Formalise

If David folded or David didn't have the ace, Victoria won.

Paraphrase

(If David folded or David didn't have the ace, Victoria won)

Formalise

If David folded or David didn't have the ace, Victoria won.

Paraphrase

(If David folded or David didn't have the ace, Victoria won)

Formalise

If David folded or David didn't have the ace, Victoria won.

Paraphrase

(If (David folded or David didn't have the ace), Victoria won)

Formalise

If David folded or David didn't have the ace, Victoria won.

Paraphrase

(If (David folded or David didn't have the ace), Victoria won)

Formalise

If David folded or David didn't have the ace, Victoria won.

Paraphrase

(If ((David folded) or David didn't have the ace), Victoria won)

Formalise

If David folded or David didn't have the ace, Victoria won.

Paraphrase

(If ((David folded) or David didn't have the ace), Victoria won)

Formalise

If David folded or David didn't have the ace, Victoria won.

Paraphrase

(If ((David folded) or it is not the case that David had the ace), Victoria won)

Formalise

If David folded or David didn't have the ace, Victoria won.

Paraphrase

(If ((David folded) or it is not the case that David had the ace), Victoria won)

Formalise

If David folded or David didn't have the ace, Victoria won.

Paraphrase

(If ((David folded) or it is not the case that (David had the ace)), Victoria won)

Formalise

If David folded or David didn't have the ace, Victoria won.

Paraphrase

(If ((David folded) or it is not the case that (David had the ace)), Victoria won)

Formalise

If David folded or David didn't have the ace, Victoria won.

Paraphrase

(If ((David folded) or it is not the case that (David had the ace)), (Victoria won))

Formalise

If David folded or David didn't have the ace, Victoria won.

Paraphrase

(If ((David folded) or it is not the case that (David had the ace)), (Victoria won))

Formalise

If David folded or David didn't have the ace, Victoria won.

Logical Form

(If ((David folded) or it is not the case that (David had the ace)), (Victoria won))

This is in (propositional) logical form.

- All connectives are standard connectives
- No sentence can be further formalised in \mathcal{L}_1 .

Formalise

If David folded or David didn't have the ace, Victoria won.

Logical Form

(If ((David folded) or it is not the case that (David had the ace)), (Victoria won))

This is in (propositional) logical form.

- All connectives are standard connectives
- No sentence can be further formalised in \mathcal{L}_1 .

```
Formalisation: ((F \lor \neg A) \rightarrow W)
Dictionary: F: David folded.
A: David had the ace.
W: Victoria won.
```

Sometimes the paraphrase may need to be quite loose.

Sometimes the paraphrase may need to be quite loose.

Formalise

(1) Exactly one of the following happened: David won or Victoria won.

Sometimes the paraphrase may need to be quite loose.

Formalise

(1) Exactly one of the following happened: David won or Victoria won.

 Paraphrase: ((David won and Victoria did not win) or (Victoria won and David did not win))
Formalise

(1) Exactly one of the following happened: David won or Victoria won.

(1) Paraphrase: ((David won and Victoria did not win) or (Victoria won and David did not win)) Formalisation: $(D \land \neg V) \lor (V \land \neg D)$

Formalise

(1) Exactly one of the following happened: David won or Victoria won.

(1) Paraphrase: ((David won and Victoria did not win) or (Victoria won and David did not win))
Formalisation: (D ∧ ¬V) ∨ (V ∧ ¬D)
Dictionary: D: David won. V: Victoria won.

Formalise

- (1) Exactly one of the following happened: David won or Victoria won.
- (2) Exactly one of the following happened: David won or Victoria won or it was a tie.
- (1) Paraphrase: ((David won and Victoria did not win) or (Victoria won and David did not win))
 Formalisation: (D ∧ ¬V) ∨ (V ∧ ¬D)
 Dictionary: D: David won. V: Victoria won.

Formalise

- (1) Exactly one of the following happened: David won or Victoria won.
- (2) Exactly one of the following happened: David won or Victoria won or it was a tie.
- (1) Paraphrase: ((David won and Victoria did not win) or (Victoria won and David did not win))
 Formalisation: (D ∧ ¬V) ∨ (V ∧ ¬D)
 Dictionary: D: David won. V: Victoria won.
- (2) Formalisation: $(D \land \neg V \land \neg T) \lor (V \land \neg D \land \neg T) \lor (T \land \neg D \land \neg V)$

Formalise

- (1) Exactly one of the following happened: David won or Victoria won.
- (2) Exactly one of the following happened: David won or Victoria won or it was a tie.
- (1) Paraphrase: ((David won and Victoria did not win) or (Victoria won and David did not win))
 Formalisation: (D ∧ ¬V) ∨ (V ∧ ¬D)
 Dictionary: D: David won. V: Victoria won.
- (2) Formalisation: $(D \land \neg V \land \neg T) \lor (V \land \neg D \land \neg T) \lor (T \land \neg D \land \neg V)$ Dictionary: T: It was a tie. (and as before)

Example

David's hand was weak and Victoria was bound to win unless the Jack came up on the turn.

Example

David's hand was weak and Victoria was bound to win unless the Jack came up on the turn.

Logical forms

(1) (((David's hand was weak) and (Victoria was bound to win))or (the Jack came up on the turn))

Example

David's hand was weak and Victoria was bound to win unless the Jack came up on the turn.

Logical forms

- (1) (((David's hand was weak) and (Victoria was bound to win))or (the Jack came up on the turn))
- (2) ((David's hand was weak) and ((Victoria was bound to win) or (the Jack came up on the turn)))

Example

David's hand was weak and Victoria was bound to win unless the Jack came up on the turn.

Logical forms

- (1) (((David's hand was weak) and (Victoria was bound to win))or (the Jack came up on the turn))
- (2) ((David's hand was weak) and ((Victoria was bound to win) or (the Jack came up on the turn)))

Formalisation

(1) $(D \wedge V) \vee J$

Dictionary

- D: David's hand was weak.
- V: Victoria was bound to win.
- J: The Jack came up on the turn.

Example

David's hand was weak and Victoria was bound to win unless the Jack came up on the turn.

Logical forms

- (1) (((David's hand was weak) and (Victoria was bound to win))or (the Jack came up on the turn))
- (2) ((David's hand was weak) and ((Victoria was bound to win) or (the Jack came up on the turn)))

Formalisation

(1) $(D \wedge V) \vee J$ (2) $D \wedge (V \vee J)$

Dictionary

- D: David's hand was weak.
- V: Victoria was bound to win.
- J: The Jack came up on the turn.

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

(1)
$$\underbrace{(D \land V)}_{\text{Scope of } \land} \lor J$$

Scope of \vee Scope of \wedge

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

Scope of \vee Scope of \wedge

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

$$(1)\underbrace{\overbrace{(D\wedge V)}^{\text{Scope of }\vee}}_{\text{Scope of }\wedge} \vee J$$

Scope of \vee Scope of \wedge

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

Scope of \vee Scope of \wedge

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

Scope of \vee Scope of \wedge

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

Scope of \vee Scope of \wedge

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

Scope of \vee Scope of \wedge

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

A subsentence of ϕ is any sentence occurring as part of ϕ (including ϕ itself).

Scope of \vee Scope of \wedge

In (1): \lor has wider scope.

Definition (p. 65)

The scope of an occurrence of a connective in a sentence ϕ is the occurrence of the smallest subsentence of ϕ that contains this occurrence of the connective.

A subsentence of ϕ is any sentence occurring as part of ϕ (including ϕ itself).

In (1): \lor has wider scope. In (2): \land has wider scope.

- (1) Tom and Jerry are animals.
- (2) Tom and Jerry are apart.
- (3) Jerry is a white mouse.
- (4) Jerry is a large mouse.

Worked example: are these acceptable paraphrases?

- (1) Tom is an animal and Jerry is an animal.
- (2) Tom is apart and Jerry is apart.
- (3) Jerry is white and Jerry is a mouse.
- (4) Jerry is large and Jerry is a mouse.

37

- (1) Tom and Jerry are animals.
- (2) Tom and Jerry are apart.
- (3) Jerry is a white mouse.
- (4) Jerry is a large mouse.

Worked example: are these acceptable paraphrases?

- (1) Tom is an animal and Jerry is an animal.
- (2) Tom is apart and Jerry is apart.
- (3) Jerry is white and Jerry is a mouse.
- (4) Jerry is large and Jerry is a mouse.

37

- (1) Tom and Jerry are animals.
- (2) Tom and Jerry are apart.
- (3) Jerry is a white mouse.
- (4) Jerry is a large mouse.

37

Yes

Worked example: are these acceptable paraphrases?

- (1) Tom is an animal and Jerry is an animal.
- (2) Tom is apart and Jerry is apart.
- (3) Jerry is white and Jerry is a mouse.
- (4) Jerry is large and Jerry is a mouse.

- (1) Tom and Jerry are animals.
- (2) Tom and Jerry are apart.
- (3) Jerry is a white mouse.
- (4) Jerry is a large mouse.

37

Yes

Worked example: are these acceptable paraphrases?

- (1) Tom is an animal and Jerry is an animal.
- (2) Tom is apart and Jerry is apart.
- (3) Jerry is white and Jerry is a mouse.
- (4) Jerry is large and Jerry is a mouse.

- (1) Tom and Jerry are animals.
- (2) Tom and Jerry are apart.
- (3) Jerry is a white mouse.
- (4) Jerry is a large mouse.

Worked example: are these acceptable paraphrases?

- Tom is an animal and Jerry is an animal.
 Tom is apart and Jerry is apart.
 Jerry is white and Jerry is a mouse.
- (4) Jerry is large and Jerry is a mouse.

37

- (1) Tom and Jerry are animals.
- (2) Tom and Jerry are apart.
- (3) Jerry is a white mouse.
- (4) Jerry is a large mouse.

Worked example: are these acceptable paraphrases?

- Tom is an animal and Jerry is an animal.
 Yes
 Tom is apart and Jerry is apart.
 Jerry is white and Jerry is a mouse.
- (4) Jerry is large and Jerry is a mouse.

37
More on paraphrase

- (1) Tom and Jerry are animals.
- (2) Tom and Jerry are apart.
- (3) Jerry is a white mouse.
- (4) Jerry is a large mouse.

Worked example: are these acceptable paraphrases?

(1)	Tom is an animal and Jerry is an animal.	Yes
(2)	Tom is apart and Jerry is apart.	No
(3)	Jerry is white and Jerry is a mouse.	Yes
10		

(4) Jerry is large and Jerry is a mouse.

More on paraphrase

- (1) Tom and Jerry are animals.
- (2) Tom and Jerry are apart.
- (3) Jerry is a white mouse.
- (4) Jerry is a large mouse.

Worked example: are these acceptable paraphrases?

(1)	Tom is an animal and Jerry is an animal.	Yes
(2)	Tom is apart and Jerry is apart.	No
(3)	Jerry is white and Jerry is a mouse.	Yes
(4)	Jerry is large and Jerry is a mouse	

More on paraphrase

- (1) Tom and Jerry are animals.
- (2) Tom and Jerry are apart.
- (3) Jerry is a white mouse.
- (4) Jerry is a large mouse.

Worked example: are these acceptable paraphrases?

(1) Tom is an animal and Jerry is a	n animal. Yes
(2) Tom is apart and Jerry is apart.	No
(3) Jerry is white and Jerry is a mo	use. Yes
(4) Jerry is large and Jerry is a mou	ıse. No

Recall last week's definitions of tautology, contradiction and validity for \mathcal{L}_1 sentences and arguments.

Recall last week's definitions of tautology, contradiction and validity for \mathcal{L}_1 sentences and arguments. These properties of \mathcal{L}_1 can be transposed to English.

Recall last week's definitions of tautology, contradiction and validity for \mathcal{L}_1 sentences and arguments. These properties of \mathcal{L}_1 can be transposed to English.

Definition

(1) An English sentence is a tautology if and only if its formalisation in propositional logic is a tautology.

Recall last week's definitions of tautology, contradiction and validity for \mathcal{L}_1 sentences and arguments. These properties of \mathcal{L}_1 can be transposed to English.

Definition

- (1) An English sentence is a tautology if and only if its formalisation in propositional logic is a tautology.
- (2) An English sentence is a propositional contradiction if and only if its formalisation in propositional logic is a contradiction.

Recall last week's definitions of tautology, contradiction and validity for \mathcal{L}_1 sentences and arguments. These properties of \mathcal{L}_1 can be transposed to English.

Definition

- (1) An English sentence is a tautology if and only if its formalisation in propositional logic is a tautology.
- (2) An English sentence is a propositional contradiction if and only if its formalisation in propositional logic is a contradiction.
- (3) An argument in English is propositionally valid if and only if its formalisation in \mathcal{L}_1 is valid.

Show that the following argument is propositionally valid.

Unless CO_2 -emissions are cut, there will be more floods. CO_2 -emissions won't be cut. Therefore there will be more floods.

Show that the following argument is propositionally valid.

Unless CO_2 -emissions are cut, there will be more floods. CO_2 -emissions won't be cut. Therefore there will be more floods.

• Start by identifying the premisses and conclusion.

Show that the following argument is propositionally valid.

Unless CO_2 -emissions are cut, there will be more floods. CO_2 -emissions won't be cut. Therefore there will be more floods.

- Start by identifying the premisses and conclusion.
- Next, specify a dictionary.

Show that the following argument is propositionally valid.

Unless CO_2 -emissions are cut, there will be more floods. CO_2 -emissions won't be cut. Therefore there will be more floods.

- Start by identifying the premisses and conclusion.
- Next, specify a dictionary.

Dictionary.

- C: CO₂ emissions will be cut.
- M: There will be more floods.

Show that the following argument is propositionally valid.

Unless CO_2 -emissions are cut, there will be more floods. CO_2 -emissions won't be cut. Therefore there will be more floods.

- Start by identifying the premisses and conclusion.
- Next, specify a dictionary.

Dictionary.

- C: CO₂ emissions will be cut.
- M: There will be more floods.
- Next, formalise the premisses and conclusion.

Show that the following argument is propositionally valid.

Unless CO_2 -emissions are cut, there will be more floods. CO_2 -emissions won't be cut. Therefore there will be more floods.

- Start by identifying the premisses and conclusion.
- Next, specify a dictionary.

Dictionary.

- C: CO₂ emissions will be cut.
- M : There will be more floods.
- Next, formalise the premisses and conclusion.
- Finally, check the formalised argument is valid.

- $\mathbf{P1}$ Unless $\mathrm{CO}_2\text{-}\mathrm{emissions}$ are cut, there will be more floods.
- $\mathbf{P2}$ CO₂-emissions won't be cut.
 - C There will be more floods

- $\mathbf{P1}$ Unless $\mathrm{CO}_2\text{-}\mathrm{emissions}$ are cut, there will be more floods.
- $\mathbf{P2}$ CO₂-emissions won't be cut.
 - C There will be more floods

Formalise the argument:

P1 Paraphrase:

 CO_2 -emissions will be cut or there will be more floods.

- $\mathbf{P1}$ Unless $\mathrm{CO}_2\text{-}\mathrm{emissions}$ are cut, there will be more floods.
- $\mathbf{P2}$ CO₂-emissions won't be cut.
 - C There will be more floods

Formalise the argument:

P1 Paraphrase:

CO₂-emissions will be cut or there will be more floods. Formalisation: $C \lor M$.

- $\mathbf{P1}$ Unless $\mathrm{CO}_2\text{-}\mathrm{emissions}$ are cut, there will be more floods.
- $\mathbf{P2}$ CO₂-emissions won't be cut.
 - C There will be more floods

Formalise the argument:

P1 Paraphrase:

CO₂-emissions will be cut or there will be more floods. Formalisation: $C \lor M$.

P2 Paraphrase:

It's not the case that CO_2 -emissions will be cut.

- $\mathbf{P1}$ Unless $\mathrm{CO}_2\text{-}\mathrm{emissions}$ are cut, there will be more floods.
- $\mathbf{P2}$ CO₂-emissions won't be cut.
 - C There will be more floods

Formalise the argument:

P1 Paraphrase:

CO₂-emissions will be cut or there will be more floods. Formalisation: $C \lor M$.

P2 Paraphrase:

It's not the case that CO_2 -emissions will be cut. Formalisation: $\neg C$.

- $\mathbf{P1}$ Unless $\mathrm{CO}_2\text{-}\mathrm{emissions}$ are cut, there will be more floods.
- $\mathbf{P2}$ CO₂-emissions won't be cut.
 - C There will be more floods

Formalise the argument:

P1 Paraphrase:

CO₂-emissions will be cut or there will be more floods. Formalisation: $C \lor M$.

P2 Paraphrase:

It's not the case that CO_2 -emissions will be cut. Formalisation: $\neg C$.

C Formalisation: M.

 $(C \lor M), \neg C \models M$

 $(C \lor M), \neg C \models M$

You know two ways to do this.

• Method 1: Forwards truth table.

 $(C \lor M), \neg C \models M$

You know two ways to do this.

- Method 1: Forwards truth table.
- Method 2: Backwards truth table.

 $(C \lor M), \neg C \models M$

You know two ways to do this.

- Method 1: Forwards truth table.
- Method 2: Backwards truth table.

$$\begin{array}{c|c|c|c|c|c|}\hline C & M & (C \lor M) & \neg C & M \\ \hline & & T & T & F \\ \hline \end{array}$$

 $(C \lor M), \neg C \models M$

You know two ways to do this.

- Method 1: Forwards truth table.
- Method 2: Backwards truth table.

 $(C \lor M), \neg C \models M$

You know two ways to do this.

- Method 1: Forwards truth table.
- Method 2: Backwards truth table.

 $(C \lor M), \neg C \models M$

You know two ways to do this.

- Method 1: Forwards truth table.
- Method 2: Backwards truth table.

 $(C \lor M), \neg C \models M$

You know two ways to do this.

- Method 1: Forwards truth table.
- Method 2: Backwards truth table.

Backwards truth-table

This shows there cannot be a line in the truth-table in which both premisses are true and the conclusion is false.

 $(C \lor M), \neg C \models M$

You know two ways to do this.

- Method 1: Forwards truth table.
- Method 2: Backwards truth table.

Backwards truth-table

This shows there cannot be a line in the truth-table in which both premisses are true and the conclusion is false. So, the English argument is propositionally valid.

http://logicmanual.philosophy.ox.ac.uk