INTRODUCTION TO LOGIC

Lecture 2
Syntax and Semantics of Propositional Logic.

Dr. James Studd

Logic is the beginning of wisdom.
Thomas Aquinas

Outline

1 Syntax vs Semantics.
2 Syntax of L_1.
3 Semantics of L_1.
4 Truth-table methods.

Syntax

Syntax is all about expressions: words and sentences.

Examples of syntactic claims
- ‘Bertrand Russell’ is a proper noun.
- ‘likes logic’ is a verb phrase.
- ‘Bertrand Russell likes logic’ is a sentence.
- Combining a proper noun and a verb phrase in this way makes a sentence.

Semantics

Semantics is all about meanings of expressions.

Examples of semantic claims
- ‘Bertrand Russell’ refers to a British philosopher.
- ‘Bertrand Russell’ refers to Bertrand Russell.
- ‘likes logic’ expresses a property Russell has.
- ‘Bertrand Russell likes logic’ is true.
Use vs Mention

Note our use of quotes to talk about expressions.

‘Bertrand Russell’ refers to Bertrand Russell.

Mention

- The first occurrence of ‘Bertrand Russell’ is an example of mention.
- This occurrence (with quotes) mentions—refers to—an expression.

Use

- The second occurrence of ‘Bertrand Russell’ is an example of use.
- This occurrence (without quotes) uses the expression to refer to a man.

Syntax: English vs. \mathcal{L}_1.

English has many different sorts of expression.

Some expressions of English

2. Connectives: ‘it is not the case that’, ‘and’, etc..
4. Verb phrases: ‘likes logic’, ‘like conceptual analysis’, etc..
5. Also: nouns, verbs, pronouns, etc., etc., etc..

\mathcal{L}_1 has just two sorts of basic expression.

Some basic expressions of \mathcal{L}_1

1. Sentence letters: e.g. ‘P’, ‘Q’.
2. Connectives: e.g. ‘\neg’, ‘\land’.

Combining sentences and connectives makes new sentences.

Some complex sentences

- ‘It is not the case that’ and ‘Bertrand Russell likes logic’ make: ‘It is not the case that Bertrand Russell likes logic’.
- ‘\neg’ and ‘P’ make: ‘$\neg P$’.
- ‘Bertrand Russell likes logic’ and ‘and’ and ‘Philosophers like conceptual analysis’ make: ‘Bertrand Russell likes logic and philosophers like conceptual analysis’.
- ‘P’, ‘\land’ and ‘Q’ make: ‘(P \land Q)’.

Logic convention: no quotes around \mathcal{L}_1-expressions.

- P, \land and Q make: (P \land Q).

Connectives

Here’s the full list of \mathcal{L}_1-connectives.

<table>
<thead>
<tr>
<th>name</th>
<th>in English</th>
<th>symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>conjunction</td>
<td>and</td>
<td>\land</td>
</tr>
<tr>
<td>disjunction</td>
<td>or</td>
<td>\lor</td>
</tr>
<tr>
<td>negation</td>
<td>it is not the case that</td>
<td>\neg</td>
</tr>
<tr>
<td>arrow</td>
<td>if ... then</td>
<td>\rightarrow</td>
</tr>
<tr>
<td>double arrow</td>
<td>if and only if</td>
<td>\leftrightarrow</td>
</tr>
</tbody>
</table>
The syntax of L_1

Here’s the official definition of L_1-sentence.

Definition

(i) All sentence letters are sentences of L_1:
 - $P, Q, R, P_1, Q_1, R_1, P_2, Q_2, R_2, P_3, \ldots$

(ii) If ϕ and ψ are sentences of L_1, then so are:
 - $\neg \phi$
 - $(\phi \land \psi)$
 - $(\phi \lor \psi)$
 - $(\phi \rightarrow \psi)$
 - $(\phi \leftrightarrow \psi)$

(iii) Nothing else is a sentence of L_1.

Greek letters: ϕ (‘PHI’) and ψ (‘PSI’): not part of L_1.

How to build a sentence of L_1

Example

The following is a sentence of L_1:

$$\neg \neg (((P \land Q) \rightarrow (P \lor \neg R_{45})) \leftrightarrow \neg ((P_3 \lor R) \lor R))$$

Object vs. Metalanguage

I mentioned that ϕ and ψ are not part of L_1.

- $\neg P$ is a L_1-sentence.
- $\neg \phi$ describes many L_1-sentences (but is not one itself).
 - e.g. $\neg P$, $\neg (Q \lor R)$, $\neg (P \leftrightarrow (Q \lor R))$...

ϕ and ψ are part of the metalanguage, not the object one.

Object language

The object language is the one we’re theorising about.

- The object language is L_1.

Metalanguage

The metalanguage is the one we’re theorising in.

- The metalanguage is (augmented) English.

ϕ and ψ are used as variables in the metalanguage, in order to generalise about sentences of the object language.

Bracketing conventions

There are conventions for dropping brackets in L_1.

Some are similar to rules used for $+$ and \times in arithmetic.

Example in arithmetic

- $4 + 5 \times 3$ does not abbreviate $(4 + 5) \times 3$.
- \times ‘binds more strongly’ than $+$.
 - $4 + 5 \times 3$ abbreviates $4 + (5 \times 3)$.

Examples in L_1

- \land and \lor bind more strongly than \rightarrow and \leftrightarrow.
 - $(P \rightarrow Q \land R)$ abbreviates $(P \rightarrow (Q \land R))$.
- One may drop outer brackets.
 - $P \land (Q \rightarrow \neg P_4)$ abbreviates $(P \land (Q \rightarrow \neg P_4))$.
- One may drop brackets on strings of \land or \lor.
 - $(P \land Q \land R)$ abbreviates $((P \land Q) \land R)$.
Semantics

Recall the characterisation of validity from week 1.

Characterisation
An argument is **logically valid** if and only if there is no interpretation of subject-specific expressions under which:

(i) the premisses are all true, and
(ii) the conclusion is false.

We’ll adapt this characterisation to L_1.

- Logical expressions: \neg, \wedge, \vee, \rightarrow and \leftrightarrow.
- Subject specific expressions: P, Q, R, \ldots
- Interpretation: L_1-structure.

L_1-structures

We interpret sentence letters by assigning them truth-values: either T for True or F for False.

Definition
An L_1-structure is an assignment of exactly one truth-value (T or F) to every sentence letter of L_1.

Examples
One may think of an L_1-structure as an infinite list that provides a value T or F for every sentence letter.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>P_1</th>
<th>Q_1</th>
<th>R_1</th>
<th>P_2</th>
<th>Q_2</th>
<th>R_2</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>A :</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>B :</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

We use $A, B, \text{etc.}$ to stand for L_1-structures.

Truth-values of complex sentences 1/3

L_1-structures **only** directly specify truth-values for P, Q, R, \ldots

- The logical connectives have fixed meanings.
- These determine the truth-values of complex sentences.
- Notation: $|\phi |_A$ is the truth-value of ϕ under A.

Truth-conditions for \neg
The meaning of \neg is summarised in its **truth table**.

<table>
<thead>
<tr>
<th>ϕ</th>
<th>$\neg \phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

In words: $|\neg \phi |_A = T$ if and only if $|\phi |_A = F$.

<table>
<thead>
<tr>
<th>ϕ</th>
<th>$\neg \phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Worked example 1

$|\phi |_A$ is the truth-value of ϕ under A.

Compute the following truth-values.

Let the structure A be partially specified as follows.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>P_1</th>
<th>Q_1</th>
<th>R_1</th>
<th>P_2</th>
<th>Q_2</th>
<th>R_2</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Compute:

$|P |_A$ = $|Q |_A$ = $|R_1 |_A$ =
$|\neg P |_A$ = $|\neg Q |_A$ = $|\neg R_1 |_A$ =
$|\neg \neg P |_A$ = $|\neg \neg Q |_A$ = $|\neg \neg R_1 |_A$ =
Truth-values of complex sentences 2/3

Truth-conditions for \land and \lor

The meanings of \land and \lor are given by the truth tables:

<table>
<thead>
<tr>
<th>ϕ</th>
<th>ψ</th>
<th>$(\phi \land \psi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ϕ</th>
<th>ψ</th>
<th>$(\phi \lor \psi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

$|(\phi \land \psi)|_A = T$ if and only if $|\phi|_A = T$ and $|\psi|_A = T$.

$|(\phi \lor \psi)|_A = T$ if and only if $|\phi|_A = T$ or $|\psi|_A = T$ (or both).

Truth-values of complex sentences 3/3

Truth-conditions for \rightarrow and \leftrightarrow

The meanings of \rightarrow and \leftrightarrow are given by the truth tables:

<table>
<thead>
<tr>
<th>ϕ</th>
<th>ψ</th>
<th>$(\phi \rightarrow \psi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ϕ</th>
<th>ψ</th>
<th>$(\phi \leftrightarrow \psi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

$|(\phi \rightarrow \psi)|_A = T$ if and only if $|\phi|_A = F$ or $|\psi|_A = T$.

$|(\phi \leftrightarrow \psi)|_A = T$ if and only if $|\phi|_A = |\psi|_A$.

Worked example 2

Let $|P|_B = T$ and $|Q|_B = F$.

Compute $|\neg(P \rightarrow Q) \rightarrow (P \land Q)|_B$

What is the truth value of $\neg(P \rightarrow Q) \rightarrow (P \land Q)$ under B?

1. $|(P \rightarrow Q)|_B = F$ and $|(P \land Q)|_B = F$
2. $|\neg(P \rightarrow Q)|_B = T$
3. $|\neg(P \rightarrow Q) \rightarrow (P \land Q)|_B = F$

For actual calculations it’s usually better to use tables.

Suppose $|P|_B = T$ and $|Q|_B = F$.

Compute $|\neg(P \rightarrow Q) \rightarrow (P \land Q)|_B$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg(P \rightarrow Q) \rightarrow (P \land Q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ϕ</th>
<th>ψ</th>
<th>$(\phi \land \psi)$</th>
<th>$(\phi \rightarrow \psi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Using the same technique we can fill out the full truth table for \(\neg(P \rightarrow Q) \rightarrow (P \land Q) \):

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
 P & Q & \neg(P \rightarrow Q) & (P \land Q) \\
 \hline
 T & T & F & T & T & T & T & T & T & T \\
 T & F & F & T & F & T & F & T & F & F \\
 F & T & T & F & T & T & F & T & F & F \\
 F & F & T & F & T & F & F & T & F & F \\
\end{array}
\]

The main column (underlined) gives the truth-value of the whole sentence.

Validity

Let \(\Gamma \) be a set of sentences of \(\mathcal{L}_1 \) and \(\phi \) a sentence of \(\mathcal{L}_1 \).

Definition

The argument with all sentences in \(\Gamma \) as premisses and \(\phi \) as conclusion is valid if and only if there is no \(\mathcal{L}_1 \)-structure under which:

(i) all sentences in \(\Gamma \) are true; and

(ii) \(\phi \) is false.

Notation: when this argument is valid we write \(\Gamma \models \phi \).

\{P \rightarrow \neg Q, Q\} \models \neg P \text{ means that the argument whose premises are } P \rightarrow \neg Q \text{ and } Q, \text{ and whose conclusion is } \neg P \text{ is valid.}

Also written: \(P \rightarrow \neg Q, Q \models \neg P \)

Worked example 3

We can use truth-tables to show that \(\mathcal{L}_1 \)-arguments are valid.

Example

Show that \(\{P \rightarrow \neg Q, Q\} \models \neg P \).

\[
\begin{array}{c|c|c|c|c}
 P & Q & P \rightarrow \neg Q & \neg P \\
 \hline
 T & T & T & F \\
 T & F & F & T \\
 F & T & T & T \\
 F & F & T & T \\
\end{array}
\]

Rows correspond to interpretations.

One needs to check that there is no row in which all the premisses are assigned T and the conclusion is assigned F.

Other logical notions

Definition

A sentence \(\phi \) of \(\mathcal{L}_1 \) is **logically true** (a tautology) iff:

- \(\phi \) is true under all \(\mathcal{L}_1 \)-structures.

e.g. \(P \lor \neg P \), and \(P \rightarrow P \) are tautologies.

Truth tables of tautologies

Every row in the main column is a T.

\[
\begin{array}{c|c|c}
 P & P \lor \neg P & P \rightarrow P \\
 \hline
 T & T & T \\
 T & F & T \\
 F & T & T \\
\end{array}
\]
Definition
A sentence \(\phi \) of \(\mathcal{L}_1 \) is a contradiction iff:
- \(\phi \) is not true under any \(\mathcal{L}_1 \)-structure.

e.g. \(P \land \neg P \), and \(\neg (P \rightarrow P) \) are contradictions.

Truth tables of contradictions
Every row in the main column is an F.

<table>
<thead>
<tr>
<th>(P)</th>
<th>(P \land \neg P)</th>
<th>(\neg (P \rightarrow P))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Definition
Sentences \(\phi \) and \(\psi \) are logically equivalent iff:
- \(\phi \) and \(\psi \) are true in exactly the same \(\mathcal{L}_1 \)-structures.

- \(P \) and \(\neg \neg P \) are logically equivalent.
- \(P \land Q \) and \(\neg (\neg P \lor \neg Q) \) are logically equivalent.

Truth tables of logical equivalents
The truth-values in the main columns agree.

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \land Q)</th>
<th>(\neg (\neg P \lor \neg Q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Worked example 4

Example
Show that the sentence \((P \rightarrow (\neg Q \land R)) \lor P \) is a tautology.

Method 1: Full truth table
- Write out the truth table for \((P \rightarrow (\neg Q \land R)) \lor P \).
- Check there’s a T in the every row of the main column.

Method 2: Backwards truth table.
- Put an F in the main column.
- Work backwards to show this leads to a contradiction.
Worked example 5

Example
Show that \(P \leftrightarrow \neg Q \models \neg (P \leftrightarrow Q) \)

Method 1: Full truth table
- Write out the full truth table.
- Check there’s no row in which the main column of the premiss is T and the main column of the conclusion is F.

Method 2: Backwards truth table
- Put a T in the main column of the premiss and an F in the main column of the conclusion.
- Work backwards to obtain a contradiction.

\[
\begin{array}{c|c|c|c}
P & Q & P \leftrightarrow \neg Q & \neg (P \leftrightarrow Q) \\
\hline
\phi & \neg \phi & \phi & \psi & (\phi \leftrightarrow \psi) \\
T & F & T & T & T \\
F & T & F & F & T \\
F & F & F & T & T \\
\end{array}
\]